Journal of Neurology

, Volume 259, Issue 9, pp 1860–1867 | Cite as

Functional consequences of a section of the anterior part of the body of the corpus callosum: evidence from an interhemispheric transcallosal approach

  • Johann Peltier
  • Martine Roussel
  • Yasmina Gerard
  • Maryse Lassonde
  • Hervé Deramond
  • Daniel Le Gars
  • Louis De Beaumont
  • Olivier Godefroy
Original Communication

Abstract

The aim of this study was to determine the neuropsychological consequences of a middle interhemispheric approach for the removal of tumors of the third or lateral ventricles. A retrospective analysis of eight callosotomized patients for ventricular tumors (three males/five females; mean age: 48.7 ± 11.2 years; education level: 11.9 ± 2.9 years) and eight healthy subjects was performed. An extensive neuropsychological test battery was used to evaluate global intellectual efficiency, memory capacities, executive functions, and interhemispheric transfer of a procedural learning task (serial reaction time task/SRTT). Neuropsychological results showed that: (1) five of eight patients operated through a middle transcallosal approach had disturbances of verbal or visual memory; (2) three of eight patients displayed a dysexecutive cognitive syndrome (two of eight of whom presenting with a deficit of verbal fluency); (3) two of eight patients presented a dysexecutive behavior syndrome; and (4) with regard to the SRTT, although all participants learned the task, in contrast to controls, the callosotomized patients showed an increase in reaction times and an absence of interhemispheric transfer of learning from one hand to the other. The transcallosal approach transects a large number of callosal fibers. This damage accounts for the deficits of memory, the dysexecutive cognitive and behavioral syndrome, and disturbances in interhemispheric transfer of learning.

Keywords

Corpus callosum Anatomy MR imaging Cognition Executive functions Memory Language Interhemispheric transfer 

Notes

Conflicts of interest

None.

References

  1. 1.
    De Lacoste MC, Kirkpatrick JB, Ross ED (1985) Topography of the human corpus callosum. J Neuropathol Exp Neurol 44(6):578–591PubMedCrossRefGoogle Scholar
  2. 2.
    Peltier J, Verclytte S, Delmaire C, Deramond H, Pruvo JP, Le Gars D, Godefroy O (2010) Microsurgical anatomy of the ventral callosal radiations: new destination, correlations with diffusion tensor imaging fiber-tracking, and clinical relevance. J Neurosurg 112(3):512–519PubMedCrossRefGoogle Scholar
  3. 3.
    Rhoton AL Jr (2007) The cerebrum anatomy. Neurosurgery 61(1 Suppl):37–118 (discussion 118–119, review)Google Scholar
  4. 4.
    Park HJ, Kim JJ, Lee SK, Seok JH, Chun J, Kim DI, Lee JD (2008) Corpus callosal connection mapping using cortical gray matter parcellation and DT-MRI. Hum Brain Mapp 29(5):503–516PubMedCrossRefGoogle Scholar
  5. 5.
    Habib M (1998) Corpus callosum disconnection syndromes and functional organization or the corpus callosum in adults. Neurochirurgie 44(1 Suppl):102–109 (Review French)PubMedGoogle Scholar
  6. 6.
    De Guise E, del Pesce M, Foschi N, Quattrini A, Papo I, Lassonde M (1999) Callosal and cortical contribution to procedural learning. Brain. 122(6):1049–1062PubMedCrossRefGoogle Scholar
  7. 7.
    Friedman MA, Meyers CA, Sawaya R (2003) Neuropsychological effects of third ventricle tumor surgery. Neurosurgery 52:791–798PubMedCrossRefGoogle Scholar
  8. 8.
    Geffen G, Walsh A, Simpson D, Jeeves M (1980) Comparison of the effects of transcortical and transcallosal removal of intraventricular tumours. Brain 103(4):773–788PubMedCrossRefGoogle Scholar
  9. 9.
    Hütter BO, Spetzger U, Bertalanffy H, Gilsbach JM (1997) Cognition and quality of life in patients after transcallosal microsurgery for midline tumors. J Neurosurg Sci 41(1):123–129PubMedGoogle Scholar
  10. 10.
    Jeeves MA, Simpson DA, Geffen G (1979) Functional consequences of the transcallosal removal of intraventricular tumours. J Neurol Neurosurg Psychiatry 42(2):134–142PubMedCrossRefGoogle Scholar
  11. 11.
    Mazza M, di Rienzo A, Costagliola C, Roncone R, Casacchia M, Ricci A et al (2004) The interhemispheric transcallosal transversal approach to the lesions of the anterior and middle third ventricle: surgical validity and neuropsychological evaluation of the outcome. Brain Cogn 55:525–534PubMedCrossRefGoogle Scholar
  12. 12.
    Sauerwein HC, Lassonde M (1994) Cognitive and sensori-motor functioning in the absence of the corpus callosum: neuropsychological studies in callosal agenesis and callosotomized patients. Behav Brain Res 20 64(1–2):229–240 (Review)CrossRefGoogle Scholar
  13. 13.
    Cummings JL, Benson DF, Houlihan JP et al (1983) Mutism: loss of neocortical and limbic vocalization. J Nerv Ment Dis 171:255–259PubMedCrossRefGoogle Scholar
  14. 14.
    Hodges JR, Carpenter K (1991) Anterograde amnesia with fornix damage following removal of third ventricle colloid cyst. J Neurol Neurosurg Psychiatry 54:633–638PubMedCrossRefGoogle Scholar
  15. 15.
    Oepen G, Schulz-Weiling R, Zimmermann P, Birg W, Straesser S, Gilsbach J (1988) Neuropsychological assessment of the transcallosal approach. Eur Arch Psychiatry Neurol Sci 237(6):365–375PubMedCrossRefGoogle Scholar
  16. 16.
    Petrucci RJ, Buchheit WA, Woodruff GC, Karian JM, DeFilipp GJ (1987) Transcallosal parafornicial approach for third ventricle tumors: neuropsychological consequences. Neurosurgery 20(3):457–464PubMedCrossRefGoogle Scholar
  17. 17.
    Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198PubMedCrossRefGoogle Scholar
  18. 18.
    Godefroy O, Duhamel A, Leclerc X, Saint-Michel T, Henon H, Leys D (1998) Brain-behaviour relationships. Some models and related statistical procedures for the study of brain-damaged patients. Brain 121:1545–1556PubMedCrossRefGoogle Scholar
  19. 19.
    Godefroy O, Fickl A, Roussel M, Auribault C, Bugnicourt JM, Lamy C, Canaple S, Petitnicolas G (2011) Is the Montreal Cognitive Assessment superior to the Mini-Mental State Examination to detect post-stroke cognitive impairment? A study with neuropsychological evaluation. Stroke 42:1712–1716PubMedCrossRefGoogle Scholar
  20. 20.
    Fazekas F, Ropele S, Enzinger C, Gorani F, Seewann A, Petrovic K, Schmidt R (2005) MTI of white matter hyperintensities. Brain 128(12):2926–2932PubMedCrossRefGoogle Scholar
  21. 21.
    Kalafat M, Hugonot-Diener L, Poitrenaud J (2003) Etalonnage français du MMS version GRECO. Rev Neuropsychologie 13:209–236Google Scholar
  22. 22.
    Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H (2005) The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53(4):695–699PubMedCrossRefGoogle Scholar
  23. 23.
    Godefroy O, Azouvi P, Robert P, Roussel M, LeGall D, Meulemans T (2010) Dysexecutive syndrome: diagnostic criteria and validation study. Groupe de Réflexion sur l’Evaluation des Fonctions Exécutives Study Group. Ann Neurol 68(6):855–864PubMedCrossRefGoogle Scholar
  24. 24.
    Raven JC (1965) Guide to using the coloured progressive matrices. Lewis, LondonGoogle Scholar
  25. 25.
    Beauregard J (1971) Le test des automatismes verbaux. Editions scientifiques et psychotechniques, Issy les MoulineauxGoogle Scholar
  26. 26.
    Deloche G, Hannequin D (1997) Test de Dénomination Orale de 80 images. Centre de psychologie appliquée, ParisGoogle Scholar
  27. 27.
    De Renzi E, Vignolo LA (1962) The token test: a sensitive test to detect receptive disturbances in aphasics. Brain 85:665–678CrossRefGoogle Scholar
  28. 28.
    Rey A (1970) Test de Copie et de Reproduction de Mémoire de figures Géométriques Complexes. Centre de Psychologie appliquée, ParisGoogle Scholar
  29. 29.
    Grober E, Buschke H, Crystal H, Bang S, Dresner R (1988) Screening for dementia by memory testing. Neurology 38(6):900–903PubMedCrossRefGoogle Scholar
  30. 30.
    Godefroy O, Roussel-Pieronne M (2007) La batterie GREFEX: données normatives, in Godefroy et les membres du GREFEX (eds) Fonctions exécutives et Pathologies Neurologiques et psychiatriques. Solal, Marseille, pp 231–252Google Scholar
  31. 31.
    Perez MA, Wise SP, Willingham DT, Cohen LG (2007) Neurophysiological mechanisms involved in transfer of procedural knowledge. J Neurosci 27(5):1045–1053PubMedCrossRefGoogle Scholar
  32. 32.
    Cardebat D, Doyon B, Puel M, Goulet P, Joanette Y (1990) Formal and semantic lexical evocation in normal subjects. Performance and dynamics of production as a function of sex, age and educational level. Acta Neurol Belg 90(4):207–217 (French)PubMedGoogle Scholar
  33. 33.
    Nelson HE (1976) A modified card sorting test sensitive to frontal lobe defects. Cortex 12(4):313–324PubMedGoogle Scholar
  34. 34.
    Test TM (1944) Army individual test. War Department Adjutant General’s office, Washington, DCGoogle Scholar
  35. 35.
    Stuss DT, Floden D, Alexander MP, Levine B, Katz D (2001) Stroop performance in focal lesion patients: dissociation of processes and frontal lobe lesion location. Neuropsychologia 39(8):771–786PubMedCrossRefGoogle Scholar
  36. 36.
    Baddeley A, Della Sala S, Papagno C, Spinnler H (1997) Dual-task performance in dysexecutive and nondysexecutive patients with a frontal lesion. Neuropsychology 11(2):187–194PubMedCrossRefGoogle Scholar
  37. 37.
    Burgess PW, Shallice T (1996) Bizarre responses, rule detection and frontal lobe lesions. Cotex 32:241–259Google Scholar
  38. 38.
    Mamelak AN, Barbaro NM, Walker JA, Laxer KD (1993) Corpus callosotomy: a quantitative study of the extent of resection, seizure control, and neuropsychological outcome. J Neurosurg 79(5):688–695PubMedCrossRefGoogle Scholar
  39. 39.
    Sass KJ, Spencer DD, Spencer SS et al (1988) Corpus callosotomy for epilepsy. II. Neurologic and neuropsychological outcome. Neurology 38:24–28PubMedCrossRefGoogle Scholar
  40. 40.
    Siwanuwatn R, Deshmukh P, Feiz-Erfan I et al (2005) Microsurgical anatomy of the transcallosal anterior interforniceal approach to the third ventricle. Neurosurgery 56:390–396PubMedCrossRefGoogle Scholar
  41. 41.
    Clark CR, Geffen GM (1989) Corpus callosum surgery and recent memory. A review. Brain 112(1):165–175 (Review)PubMedCrossRefGoogle Scholar
  42. 42.
    Benes V (1982) Sequelae of transcallosal surgery. Child’s Brain 9:69–72PubMedGoogle Scholar
  43. 43.
    Leiguarda R, Strakstein S, Berthier M (1989) Anterior callosal haemorrhage. A partial interhemispheric disconnection syndrome. Brain 112:1019–1037PubMedCrossRefGoogle Scholar
  44. 44.
    Lassonde M, Sauerwein C (1997) Neuropsychological outcome of corpus callosotomy in children and adolescents. J Neurosurg Sci 41:67–73PubMedCrossRefGoogle Scholar
  45. 45.
    Godefroy O, Roussel M, Leclerc X, Leys D (2009) Deficit of episodic memory: anatomy and related patterns in stroke patients. Eur Neurol 61:223–229PubMedCrossRefGoogle Scholar
  46. 46.
    Wheeler MA, Stuss DT, Tulving E (1995) Frontal lobe damage produces episodic memory impairment. J Int Neuropsychol Soc 1:525–536PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Johann Peltier
    • 1
    • 3
    • 6
  • Martine Roussel
    • 2
    • 3
  • Yasmina Gerard
    • 2
    • 3
  • Maryse Lassonde
    • 4
  • Hervé Deramond
    • 5
  • Daniel Le Gars
    • 1
  • Louis De Beaumont
    • 4
  • Olivier Godefroy
    • 2
    • 3
  1. 1.Laboratory of Anatomy and OrganogenesisUniversity of Picardy Jules VerneAmiensFrance
  2. 2.Department of NeurologyAmiens University HospitalAmiensFrance
  3. 3.Laboratory of Functional Neurosciences and Pathology UMR CNRS 8160University of Picardy Jules VerneAmiensFrance
  4. 4.Centre de Recherche en Neuropsychologie et CognitionUniversité de MontrealMontrealCanada
  5. 5.Department of NeuroradiologyAmiens University HospitalAmiensFrance
  6. 6.Department of NeurosurgeryAmiens University HospitalAmiens Cedex 1France

Personalised recommendations