Journal of Neurology

, Volume 259, Issue 8, pp 1648–1654 | Cite as

Quantitative MRI can detect subclinical disease progression in muscular dystrophy

  • Arne Fischmann
  • Patricia Hafner
  • Susanne Fasler
  • Monika Gloor
  • Oliver Bieri
  • Ueli Studler
  • Dirk Fischer
Original Communication

Abstract

Oculopharyngeal muscular dystrophy (OPMD) is a rare autosomal dominant muscular dystrophy with late onset and slow progression. The aim of this study was to compare different methods of quantitative MRI in the follow-up of OPMD to semiquantitative evaluation of MRI images and to functional parameters. We examined 8 patients with genetically confirmed OPMD and 5 healthy volunteers twice at an interval of 13 months. Motor function measurements (MFM) were assessed. Imaging at 1.5 T (Siemens Magnetom Avanto) comprised two axial slice groups at the largest diameter of thigh and calf and included T1w TSE, 2-point Dixon for muscular fat fraction (MFF) and a multi-contrast TSE sequence to calculate quantitative T2 values. T1 images were analyzed using Fischer’s semiquantitative 5-point (0–4) scale. MFM and visual scores showed no significant difference over the study period. Overall T2 values increased in patients over the study period from 49.4 to 51.6 ms, MFF increased from 19.2 to 20.7%. Neither T2 values nor MFF increased in controls. Changes in T2 correlated with the time interval between examinations (r2 = 0.42). In this small pilot trial, it was shown that quantitative muscle MRI can detect subclinical changes in patients with OPMD. Quantitative MRI might, therefore, be a useful tool for monitoring disease progression in future therapeutic trials.

Keywords

MRI Neuromuscular disease OPMD Follow-up 

Supplementary material

415_2011_6393_MOESM1_ESM.tif (36.5 mb)
Supplementary material 1 (TIFF 37324 kb)
415_2011_6393_MOESM2_ESM.tif (33.4 mb)
Supplementary material 2 (TIFF 34180 kb)

References

  1. 1.
    Brais B (2009) Oculopharyngeal muscular dystrophy: a polyalanine myopathy. Curr Neurol Neurosci Rep 9:76–82PubMedCrossRefGoogle Scholar
  2. 2.
    Fischmann A, Gloor M, Fasler S, Haas T, Rodoni Wetzel R, Bieri O, Wetzel S, Heinimann K, Scheffler K, Fischer D (2011) Muscular involvement assessed by MRI correlates to motor function measurement values in oculopharyngeal muscular dystrophy. J Neurol 258:1333–1340. doi:10.1007/s00415-011-5937-9 PubMedCrossRefGoogle Scholar
  3. 3.
    Mercuri E, Mayhew A, Muntoni F, Messina S, Straub V, Van Ommen GJ, Voit T, Bertini E, Bushby K, Network TREAT-NMDN (2008) Towards harmonisation of outcome measures for DMD and SMA within TREAT-NMD; report of three expert workshops: TREAT-NMD/ENMC workshop on outcome measures, 12th–13th May 2007, Naarden, The Netherlands; TREAT-NMD workshop on outcome measures in experimental trials for DMD, 30th June–1st July 2007, Naarden, The Netherlands; conjoint Institute of Myology TREAT-NMD meeting on physical activity monitoring in neuromuscular disorders, 11th July 2007, Paris, France. Neuromuscul Disord 18:894–903. doi:10.1016/j.nmd.2008.07.003 PubMedCrossRefGoogle Scholar
  4. 4.
    Kim HK, Laor T, Horn PS, Wong B (2010) Quantitative assessment of the T2 relaxation time of the gluteus muscles in children with Duchenne muscular dystrophy: a comparative study before and after steroid treatment. Korean J Radiol 11:304–311. doi:10.3348/kjr.2010.11.3.304 PubMedCrossRefGoogle Scholar
  5. 5.
    Gloor M, Fasler S, Fischmann A, Haas T, Bieri O, Heinimann K, Wetzel SG, Scheffler K, Fischer D (2011) Quantification of fat infiltration in oculopharyngeal muscular dystrophy: comparison of three MR imaging methods. JMRI 33:203–210. doi:10.1002/jmri.22431 PubMedCrossRefGoogle Scholar
  6. 6.
    Paradas C, Llauger J, Diaz-Manera J, Rojas-García R, De Luna N, Iturriaga C, Márquez C, Usón M, Hankiewicz K, Gallardo E, Illa I (2010) Redefining dysferlinopathy phenotypes based on clinical findings and muscle imaging studies. Neurology 75:316–323. doi:10.1212/WNL.0b013e3181ea1564 PubMedCrossRefGoogle Scholar
  7. 7.
    Vuillerot C, Girardot F, Payan C, Fermanian J, Iwaz J, Lattre DE, Berard C (2009) Monitoring changes and predicting loss of ambulation in duchenne muscular dystrophy with the motor function measure. Dev Med Child Neurol. doi:10.1111/j.1469-8749.2009.03316.x PubMedGoogle Scholar
  8. 8.
    Bérard C, Payan C, Hodgkinson I, Fermanian J, Group MFMCS (2005) A motor function measure for neuromuscular diseases construction and validation study. Neuromuscul Disord 15:463–470PubMedCrossRefGoogle Scholar
  9. 9.
    Fischer D, Kley RA, Strach K, Meyer C, Sommer T, Eger K, Rolfs A, Meyer W, Pou A, Pradas J, Heyer CM, Grossmann A, Huebner A, Kress W, Reimann J, Schröder RJ, Eymard B, Fardeau M, Udd B, Goldfarb L, Vorgerd M, Olivé M (2008) Distinct muscle imaging patterns in myofibrillar myopathies. Neurology 71:758–765. doi:10.1212/01.wnl.0000324927.28817.9b PubMedCrossRefGoogle Scholar
  10. 10.
    Coté C, Hiba B, Hebert LJ, Vial C, Remec JF, Janier M, Puymirat J (2011) MRI of tibialis anterior skeletal muscle in myotonic dystrophy type 1. Can J Neurol Sci 38:112–118PubMedGoogle Scholar
  11. 11.
    Sinclair C, Morrow J, Fischmann A, Hanna M, Reilly M, Yousry T, Golay X, Thornton J (2011) Skeletal muscle MRI-determined fat fraction and myometric strength in inclusion body myositis and Charcot-Marie-Tooth disease Type 1A. Neuromuscul Disord 21:S5. doi:10.1016/S0960-8966(11)70014-1 CrossRefGoogle Scholar
  12. 12.
    Bryan WW, Reisch JS, McDonald G, Herbelin LL, Barohn RJ, Fleckenstein JL (1998) Magnetic resonance imaging of muscle in amyotrophic lateral sclerosis. Neurology 51:110–113PubMedCrossRefGoogle Scholar
  13. 13.
    Gaeta M, Scribano E, Mileto A, Mazziotti S, Rodolico C, Toscano A, Settineri N, Ascenti G, Blandino A (2011) Muscle fat fraction in neuromuscular disorders: dual-echo dual-flip-angle spoiled gradient-recalled mr imaging technique for quantification—a feasibility study. Radiology 259:487–494. doi:10.1148/radiol.10101108 PubMedCrossRefGoogle Scholar
  14. 14.
    Meola G, Bugiardini E, Cardani R (2011) Muscle biopsy. J Neurol. doi:10.1007/s00415-011-6193-8 PubMedGoogle Scholar
  15. 15.
    Huang Y, Majumdar S, Genant HK, Chan WP, Sharma KR, Yu P, Mynhier M, Miller RG (1994) Quantitative MR relaxometry study of muscle composition and function in Duchenne muscular dystrophy. JMRI 4:59–64PubMedCrossRefGoogle Scholar
  16. 16.
    Patten C, Meyer RA, Fleckenstein JL (2003) T2 mapping of muscle. Semin Musculoskel Radiol 7:297–305. doi:10.1055/s-2004-815677 CrossRefGoogle Scholar
  17. 17.
    Skinner TE, Glover GH (1997) An extended two-point Dixon algorithm for calculating separate water, fat, and B0 images. Magn Reson Med 37:628–630PubMedCrossRefGoogle Scholar
  18. 18.
    Allerhand A (1966) Analysis of carr—purcell spin-echo nmr experiments on multiple-spin systems. I. the effect of homonuclear coupling. J Chem Phys 44:1–9CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Arne Fischmann
    • 1
  • Patricia Hafner
    • 2
  • Susanne Fasler
    • 2
  • Monika Gloor
    • 3
  • Oliver Bieri
    • 3
  • Ueli Studler
    • 4
  • Dirk Fischer
    • 2
    • 5
  1. 1.Department for Diagnostic and Interventional Neuroradiology, Institute of RadiologyUniversity of Basel HospitalBaselSwitzerland
  2. 2.Department of NeurologyUniversity of Basel HospitalBaselSwitzerland
  3. 3.Division of Radiological Physics, Institute of RadiologyUniversity of Basel HospitalBaselSwitzerland
  4. 4.Musculoskeletal Radiology, Institute of RadiologyUniversity of Basel HospitalBaselSwitzerland
  5. 5.Department of NeuropaediatricsUniversity of Basel Children’s HospitalBaselSwitzerland

Personalised recommendations