Journal of Neurology

, Volume 259, Issue 6, pp 1071–1080 | Cite as

Executive dysfunction in frontotemporal dementia is related to abnormalities in frontal white matter tracts

  • M. C. Tartaglia
  • Y. Zhang
  • C. Racine
  • V. Laluz
  • J. Neuhaus
  • L. Chao
  • J. Kramer
  • H. Rosen
  • B. Miller
  • M. Weiner
Original Communication


Cognitive deficits in behavioral-variant frontotemporal dementia (bvFTD) and AD are linked to frontal and temporal lobe gray matter (GM) pathology. The aim of this study was to assess the relative contribution of white (WM) and GM abnormalities to cognitive dysfunction in bvFTD and AD. Fractional anisotropy (FA) for the corpus callosum, cingulum (Cg), and uncinate fasciculus (Unc) was determined in 17 bvFTD and 10 AD patients who underwent neuropsychological testing. Regressions were performed to assess the relative contribution of WM and GM abnormalities to cognitive deficits. Multiple regression analysis revealed that in bvFTD, the left anterior Cg FA was related to executive function, the right anterior Cg FA to visual-spatial attention and working memory, the right posterior Cg to visual-constructional abilities and the left Unc FA to Modified Trails Errors. After adding corresponding GM volumes, the left anterior Cg FA, the right anterior cingulate FA, the right posterior cingulate FA and the left uncinate FA remained significant predictors of the cognitive tasks. In the AD group, the left posterior Cg FA and right descending Cg FA were related to visual recall performance but did not remain significant predictors when GM volumes were added to the regression. These results suggest that reduced integrity of specific WM tracts contribute to cognitive deficits observed in bvFTD after accounting for GM atrophy. In AD, memory impairment was related to WM tract injury but this relationship was no longer observed when GM volumes were included.


Cingulum Executive function Frontotemporal dementia Alzheimer’s disease White matter tracts 


  1. 1.
    Aguirre GK, Detre JA, Alsop DC, D’Esposito M (1996) The parahippocampus subserves topographical learning in man. Cereb Cortex 6:823–829PubMedCrossRefGoogle Scholar
  2. 2.
    Avants BB, Cook PA, Ungar L, Gee JC, Grossman M (2010) Dementia induces correlated reductions in white matter integrity and cortical thickness: a multivariate neuroimaging study with sparse canonical correlation analysis. Neuroimage 50:1004–1016PubMedCrossRefGoogle Scholar
  3. 3.
    Baron JC, Chetelat G, Desgranges B, Perchey G, Landeau B, de la Sayette V, Eustache F (2001) In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer’s disease. Neuroimage 14:298–309PubMedCrossRefGoogle Scholar
  4. 4.
    Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 15:435–455PubMedCrossRefGoogle Scholar
  5. 5.
    Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–1013PubMedCrossRefGoogle Scholar
  6. 6.
    Bor D, Duncan J, Lee AC, Parr A, Owen AM (2006) Frontal lobe involvement in spatial span: converging studies of normal and impaired function. Neuropsychologia 44:229–237PubMedCrossRefGoogle Scholar
  7. 7.
    Boxer AL, Kramer JH, Du AT, Schuff N, Weiner MW, Miller BL, Rosen HJ (2003) Focal right inferotemporal atrophy in AD with disproportionate visual constructive impairment. Neurology 61:1485–1491PubMedCrossRefGoogle Scholar
  8. 8.
    Braak H, Braak E, Kalus P (1989) Alzheimer’s disease: areal and laminar pathology in the occipital isocortex. Acta Neuropathol 77:494–506PubMedCrossRefGoogle Scholar
  9. 9.
    Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, Sheline YI, Klunk WE, Mathis CA, Morris JC, Mintun MA (2005) Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 25:7709–7717PubMedCrossRefGoogle Scholar
  10. 10.
    Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD (1998) Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280:747–749PubMedCrossRefGoogle Scholar
  11. 11.
    Chao LL, Schuff N, Clevenger EM, Mueller SG, Rosen HJ, Gorno-Tempini ML, Kramer JH, Miller BL, Weiner MW (2007) Patterns of white matter atrophy in frontotemporal lobar degeneration. Arch Neurol 64:1619–1624PubMedCrossRefGoogle Scholar
  12. 12.
    Corballis PM, Funnell MG, Gazzaniga MS (2000) An evolutionary perspective on hemispheric asymmetries. Brain Cogn 43:112–117PubMedGoogle Scholar
  13. 13.
    Cowell SF, Egan GF, Code C, Harasty J, Watson JD (2000) The functional neuroanatomy of simple calculation and number repetition: a parametric PET activation study. Neuroimage 12:565–573PubMedCrossRefGoogle Scholar
  14. 14.
    Delis D, Kaplan E, Kramer J (2001) The Delis-Kaplan executive function system. The Psychological Corporation, San AntonioGoogle Scholar
  15. 15.
    Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980PubMedCrossRefGoogle Scholar
  16. 16.
    Elderkin-Thompson V, Boone KB, Hwang S, Kumar A (2004) Neurocognitive profiles in elderly patients with frontotemporal degeneration or major depressive disorder. J Int Neuropsychol Soc 10:753–771PubMedCrossRefGoogle Scholar
  17. 17.
    Goldman-Rakic PS (1988) Topography of cognition: parallel distributed networks in primate association cortex. Annu Rev Neurosci 11:137–156PubMedCrossRefGoogle Scholar
  18. 18.
    Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 101:4637–4642PubMedCrossRefGoogle Scholar
  19. 19.
    Kaplan E (1983) Process versus achievement revisited. In: Wapner S, Kaplan B (eds) Toward a holistic developmental psychology. Lawrence Erlbaum, HillsdaleGoogle Scholar
  20. 20.
    Kaplan E, Fein D, Morris R, Delis D (1991) The WAIS-R as a neuropsychological instrument. Psychological Corporation, San AntonioGoogle Scholar
  21. 21.
    Kaplan E, Goodglass H, Wintraub S (1983) The Boston Naming Test. Lea and Febiger, PhiladelphiaGoogle Scholar
  22. 22.
    Kohler S, Black SE, Sinden M, Szekely C, Kidron D, Parker JL, Foster JK, Moscovitch M, Winocour G, Szalai JP, Bronskill MJ (1998) Memory impairments associated with hippocampal versus parahippocampal-gyrus atrophy: an MR volumetry study in Alzheimer’s disease. Neuropsychologia 36:901–914PubMedCrossRefGoogle Scholar
  23. 23.
    Kramer JH, Jurik J, Sha SJ, Rankin KP, Rosen HJ, Johnson JK, Miller BL (2003) Distinctive neuropsychological patterns in frontotemporal dementia, semantic dementia, and Alzheimer disease. Cogn Behav Neurol 16:211–218PubMedCrossRefGoogle Scholar
  24. 24.
    Lezak MD (2004) Executive functions and motor performance. In: Lezak MD (ed) Neuropsychological assessment, 4th edn. Oxford University Press, Oxford, pp 611–646Google Scholar
  25. 25.
    McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–944PubMedCrossRefGoogle Scholar
  26. 26.
    Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269PubMedCrossRefGoogle Scholar
  27. 27.
    Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, Freedman M, Kertesz A, Robert PH, Albert M, Boone K, Miller BL, Cummings J, Benson DF (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–1554PubMedCrossRefGoogle Scholar
  28. 28.
    Neumann M, Kwong LK, Truax AC, Vanmassenhove B, Kretzschmar HA, Van Deerlin VM, Clark CM, Grossman M, Miller BL, Trojanowski JQ, Lee VM (2007) TDP-43-positive white matter pathology in frontotemporal lobar degeneration with ubiquitin-positive inclusions. J Neuropathol Exp Neurol 66:177–183PubMedCrossRefGoogle Scholar
  29. 29.
    Neumann M, Rademakers R, Roeber S, Baker M, Kretzschmar HA, Mackenzie IR (2009) A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain 132:2922–2931PubMedCrossRefGoogle Scholar
  30. 30.
    O’Sullivan M, Morris RG, Huckstep B, Jones DK, Williams SC, Markus HS (2004) Diffusion tensor MRI correlates with executive dysfunction in patients with ischaemic leukoaraiosis. J Neurol Neurosurg Psychiatry 75:441–447PubMedCrossRefGoogle Scholar
  31. 31.
    Pa J, Possin KL, Wilson SM, Quitania LC, Kramer JH, Boxer AL, Weiner MW, Johnson JK (2010) Gray matter correlates of set-shifting among neurodegenerative disease, mild cognitive impairment, and healthy older adults. J Int Neuropsychol Soc 16:640–650PubMedCrossRefGoogle Scholar
  32. 32.
    Park HJ, Kim JJ, Lee SK, Seok JH, Chun J, Kim DI, Lee JD (2008) Corpus callosal connection mapping using cortical gray matter parcellation and DT-MRI. Hum Brain Mapp 29:503–516PubMedCrossRefGoogle Scholar
  33. 33.
    Rabinovici GD, Rascovsky K, Miller BL (2008) Frontotemporal lobar degeneration: clinical and pathologic overview. Handb Clin Neurol 89:343–364PubMedCrossRefGoogle Scholar
  34. 34.
    Rabinovici GD, Seeley WW, Kim EJ, Gorno-Tempini ML, Rascovsky K, Pagliaro TA, Allison SC, Halabi C, Kramer JH, Johnson JK, Weiner MW, Forman MS, Trojanowski JQ, Dearmond SJ, Miller BL, Rosen HJ (2007) Distinct MRI atrophy patterns in autopsy-proven Alzheimer’s disease and frontotemporal lobar degeneration. Am J Alzheimers Dis Other Demen 22:474–488PubMedCrossRefGoogle Scholar
  35. 35.
    Schroeter ML, Raczka K, Neumann J, von Cramon DY (2008) Neural networks in frontotemporal dementia—a meta-analysis. Neurobiol Aging 29:418–426PubMedCrossRefGoogle Scholar
  36. 36.
    Seeley WW (2008) Selective functional, regional, and neuronal vulnerability in frontotemporal dementia. Curr Opin Neurol 21:701–707PubMedCrossRefGoogle Scholar
  37. 37.
    Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62:42–52PubMedCrossRefGoogle Scholar
  38. 38.
    Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356PubMedCrossRefGoogle Scholar
  39. 39.
    Sjobeck M, Elfgren C, Larsson EM, Brockstedt S, Latt J, Englund E, Passant U (2010) Alzheimer’s disease (AD) and executive dysfunction. A case-control study on the significance of frontal white matter changes detected by diffusion tensor imaging (DTI). Arch Gerontol Geriatr 50:260–266PubMedCrossRefGoogle Scholar
  40. 40.
    Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040–13045PubMedCrossRefGoogle Scholar
  41. 41.
    Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 17:1429–1436PubMedCrossRefGoogle Scholar
  42. 42.
    Stuss DT, Alexander MP (2007) Is there a dysexecutive syndrome? Philos Trans R Soc Lond B Biol Sci 362:901–915PubMedCrossRefGoogle Scholar
  43. 43.
    Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PC, Mori S (2004) Fiber tract-based atlas of human white matter anatomy. Radiology 230:77–87PubMedCrossRefGoogle Scholar
  44. 44.
    Warrington EK, James M (1991) A new test of object decision: 2D silhouettes featuring a minimal view. Cortex 27:370–383PubMedGoogle Scholar
  45. 45.
    Wechsler D (1997) WAISIII and WMSIII—Wechsler Adult Intelligence Scale and Wechsler Adult Memory Scale, 3rd edn. The Psychological Corporation, San AntonioGoogle Scholar
  46. 46.
    Zhang Y, Schuff N, Du AT, Rosen HJ, Kramer JH, Gorno-Tempini ML, Miller BL, Weiner MW (2009) White matter damage in frontotemporal dementia and Alzheimer’s disease measured by diffusion MRI. Brain 132:2579–2592PubMedCrossRefGoogle Scholar
  47. 47.
    Zhukareva V, Mann D, Pickering-Brown S, Uryu K, Shuck T, Shah K, Grossman M, Miller BL, Hulette CM, Feinstein SC, Trojanowski JQ, Lee VM (2002) Sporadic Pick’s disease: a tauopathy characterized by a spectrum of pathological tau isoforms in gray and white matter. Ann Neurol 51:730–739PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • M. C. Tartaglia
    • 1
    • 2
  • Y. Zhang
    • 3
  • C. Racine
    • 4
  • V. Laluz
    • 1
  • J. Neuhaus
    • 1
  • L. Chao
    • 3
  • J. Kramer
    • 1
  • H. Rosen
    • 1
  • B. Miller
    • 1
  • M. Weiner
    • 3
  1. 1.Department of Neurology, Memory and Aging CenterUniversity of CaliforniaSan FranciscoUSA
  2. 2.Neurology Clinic/Memory Clinic, Toronto Western HospitalUniversity of TorontoTorontoCanada
  3. 3.Department of Radiology, Center for Imaging of Neurodegenerative Diseases, VA Medical CenterUniversity of California San FranciscoSan FranciscoUSA
  4. 4.Departments of Neurological Surgery and Radiation OncologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations