Advertisement

Journal of Neurology

, Volume 259, Issue 3, pp 427–435 | Cite as

Anti-LRP4 autoantibodies in AChR- and MuSK-antibody-negative myasthenia gravis

  • Alexandra Pevzner
  • Benedikt Schoser
  • Katja Peters
  • Nicoleta-Carmen Cosma
  • Andromachi Karakatsani
  • Berthold Schalke
  • Arthur Melms
  • Stephan KrögerEmail author
Original Communication

Abstract

Myasthenia gravis (MG) is an autoimmune disorder characterized by a defect in synaptic transmission at the neuromuscular junction causing fluctuating muscle weakness with a decremental response to repetitive nerve stimulation or altered jitter in single-fiber electromyography (EMG). Approximately 80% of all myasthenia gravis patients have autoantibodies against the nicotinic acetylcholine receptor in their serum. Autoantibodies against the tyrosine kinase muscle-specific kinase (MuSK) are responsible for 5–10% of all myasthenia gravis cases. The autoimmune target in the remaining cases is unknown. Recently, low-density lipoprotein receptor-related protein 4 (LRP4) has been identified as the agrin receptor. LRP4 interacts with agrin, and the binding of agrin activates MuSK, which leads to the formation of most if not all postsynaptic specializations, including aggregates containing acetylcholine receptors (AChRs) in the junctional plasma membrane. In the present study we tested if autoantibodies against LRP4 are detectable in patients with myasthenia gravis. To this end we analyzed 13 sera from patients with generalized myasthenia gravis but without antibodies against AChR or MuSK. The results showed that 12 out of 13 antisera from double-seronegative MG patients bound to proteins concentrated at the neuromuscular junction of adult mouse skeletal muscle and that approximately 50% of the tested sera specifically bound to HEK293 cells transfected with human LRP4. Moreover, 4 out of these 13 sera inhibited agrin-induced aggregation of AChRs in cultured myotubes by more than 50%, suggesting a pathogenic role regarding the dysfunction of the neuromuscular endplate. These results indicate that LRP4 is a novel target for autoantibodies and is a diagnostic marker in seronegative MG patients.

Keywords

Myasthenia gravis Low-density lipoprotein receptor-related protein LRP4 Autoimmune disorder 

Notes

Acknowledgments

We would like to thank M. Götz for constant support and encouragement. The help from Lin Mei (Augusta, USA) during early stages of the project is gratefully acknowledged. We thank Thomas Klopstock for providing one additional patient serum for this study. Anti-agrin antibodies were generously provided by M. Rüegg (Basel, Switzerland). Initial support was obtained from the German Society for Muscle Disease (S.K.). A.P. is a stipendiary of the German National Academic Foundation (Studienstiftung des Deutschen Volkes), and N.-C.C. was supported by the AMGEN Foundation.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Romi F, Gilhus NE, Aarli JA (2006) Myasthenia gravis: disease severity and prognosis. Acta Neurol Scand Suppl 183:24–25PubMedCrossRefGoogle Scholar
  2. 2.
    Newsom-Davis J (2007) The emerging diversity of neuromuscular junction disorders. Acta Myol 26:5–10PubMedGoogle Scholar
  3. 3.
    Farrugia ME, Vincent A (2010) Autoimmune mediated neuromuscular junction defects. Curr Opin Neurol 23:489–495PubMedCrossRefGoogle Scholar
  4. 4.
    Lindstrom JM, Einarson BL, Lennon VA, Seybold ME (1976) Pathological mechanisms in experimental autoimmune myasthenia gravis. I. Immunogenicity of syngeneic muscle acetylcholine receptor and quantitative extraction of receptor and antibody-receptor complexes from muscles of rats with experimental automimmune myasthenia gravis. J Exp Med 144:726–738PubMedCrossRefGoogle Scholar
  5. 5.
    Drachman DB, de Silva S, Ramsay D, Pestronk A (1987) Humoral pathogenesis of myasthenia gravis. Ann N Y Acad Sci 505:90–105PubMedCrossRefGoogle Scholar
  6. 6.
    Engel AG (1979) The immunopathological basis of acetylcholine receptor deficiency in myasthenia gravis. Prog Brain Res 49:423–434PubMedCrossRefGoogle Scholar
  7. 7.
    Burges J, Wray DW, Pizzighella S, Hall Z, Vincent A (1990) A myasthenia gravis plasma immunoglobulin reduces miniature endplate potentials at human endplates in vitro. Muscle Nerve 13:407–413PubMedCrossRefGoogle Scholar
  8. 8.
    Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, Vincent A (2001) Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med 7:365–368PubMedCrossRefGoogle Scholar
  9. 9.
    Scuderi F, Marino M, Colonna L, Mannella F, Evoli A, Provenzano C, Bartoccioni E (2002) Anti-p110 autoantibodies identify a subtype of “seronegative” myasthenia gravis with prominent oculobulbar involvement. Lab Invest 82:1139–1146PubMedGoogle Scholar
  10. 10.
    McConville J, Farrugia ME, Beeson D, Kishore U, Metcalfe R, Newsom-Davis J, Vincent A (2004) Detection and characterization of MuSK antibodies in seronegative myasthenia gravis. Ann Neurol 55:580–584PubMedCrossRefGoogle Scholar
  11. 11.
    Guptill JT, Sanders DB, Evoli A (2011) Anti-musk antibody myasthenia gravis: clinical findings and response to treatment in two large cohorts. Muscle Nerve 44:36–40PubMedCrossRefGoogle Scholar
  12. 12.
    Valenzuela DM, Stitt TN, Distefano PS, Rojas E, Mattsson K, Compton DL, Nunez L, Park JS, Stark JL, Gies DR, Thomas S, Le Beau MM, Fernald AA, Copeland NG, Jenkins NA, Burden SJ, Glass DJ, Yancopoulos GD (1995) Receptor tyrosine kinase specific for the skeletal muscle lineage: expression in embryonic muscle, at the neuromuscular junction, and after injury. Neuron 15:573–584PubMedCrossRefGoogle Scholar
  13. 13.
    Glass DJ, DeChiara TM, Stitt TN, Distefano PS, Valenzuela DM, Yancopoulos GD (1996) The receptor tyrosine kinase MuSK is required for neuromuscular junction formation and is a functional receptor for agrin. Cold Spring Harb Symp Quant Biol 61:435–444PubMedCrossRefGoogle Scholar
  14. 14.
    Apel ED, Glass DJ, Moscoso LM, Yancopoulos GD, Sanes JR (1997) Rapsyn is required for MuSK signaling and recruits synaptic components to a MuSK-containing scaffold. Neuron 18:623–635PubMedCrossRefGoogle Scholar
  15. 15.
    Sanders DB, Juel VC (2008) MuSK-antibody positive myasthenia gravis: questions from the clinic. J Neuroimmunol 201–202:85–89PubMedCrossRefGoogle Scholar
  16. 16.
    Cenacchi G, Valentina P, Marina F, Elena P, Corrado A (2011) Comparison of muscle ultrastructure in myasthenia gravis with anti-MuSK and anti-AChR antibodies. J Neurol 258:746–752PubMedCrossRefGoogle Scholar
  17. 17.
    Benveniste O, Jacobson L, Farrugia ME, Clover L, Vincent A (2005) MuSK antibody positive myasthenia gravis plasma modifies MURF-1 expression in C2C12 cultures and mouse muscle in vivo. J Neuroimmunol 170:41–48PubMedCrossRefGoogle Scholar
  18. 18.
    Boneva N, Frenkian-Cuvelier M, Bidault J, Brenner T, Berrih-Aknin S (2006) Major pathogenic effects of anti-MuSK antibodies in myasthenia gravis. J Neuroimmunol 177:119–131PubMedCrossRefGoogle Scholar
  19. 19.
    Farrugia ME, Bonifati DM, Clover L, Cossins J, Beeson D, Vincent A (2007) Effect of sera from AChR-antibody negative myasthenia gravis patients on AChR and MuSK in cell cultures. J Neuroimmunol 185:136–144PubMedCrossRefGoogle Scholar
  20. 20.
    Vincent A, Leite MI, Farrugia ME, Jacob S, Viegas S, Shiraishi H, Benveniste O, Morgan BP, Hilton-Jones D, Newsom-Davis J, Beeson D, Willcox N (2008) Myasthenia gravis seronegative for acetylcholine receptor antibodies. Ann N Y Acad Sci 1132:84–92PubMedCrossRefGoogle Scholar
  21. 21.
    Leite MI, Jacob S, Viegas S, Cossins J, Clover L, Morgan BP, Beeson D, Willcox N, Vincent A (2008) IgG1 antibodies to acetylcholine receptors in ‘seronegative’ myasthenia gravis. Brain 131:1940–1952PubMedCrossRefGoogle Scholar
  22. 22.
    Leite MI, Strobel P, Jones M, Micklem K, Moritz R, Gold R, Niks EH, Berrih-Aknin S, Scaravilli F, Canelhas A, Marx A, Newsom-Davis J, Willcox N, Vincent A (2005) Fewer thymic changes in MuSK antibody-positive than in MuSK antibody-negative MG. Ann Neurol 57:444–448PubMedCrossRefGoogle Scholar
  23. 23.
    Romi F, Aarli JA, Gilhus NE (2005) Seronegative myasthenia gravis: disease severity and prognosis. Eur J Neurol 12:413–418PubMedCrossRefGoogle Scholar
  24. 24.
    Mossman S, Vincent A, Newsom-Davis J (1986) Myasthenia gravis without acetylcholine-receptor antibody: a distinct disease entity. Lancet 1:116–119PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang B, Luo S, Wang Q, Suzuki T, Xiong WC, Mei L (2008) LRP4 serves as a coreceptor of agrin. Neuron 60:285–297PubMedCrossRefGoogle Scholar
  26. 26.
    Kim N, Stiegler AL, Cameron TO, Hallock PT, Gomez AM, Huang JH, Hubbard SR, Dustin ML, Burden SJ (2008) Lrp4 is a receptor for agrin and forms a complex with MuSK. Cell 135:334–342PubMedCrossRefGoogle Scholar
  27. 27.
    Higuchi O, Hamuro J, Motomura M, Yamanashi Y (2011) Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol 69:418–422PubMedCrossRefGoogle Scholar
  28. 28.
    Schröder JE, Tegeler MR, Grosshans U, Porten E, Blank M, Lee J, Esapa C, Blake DJ, Kröger S (2007) Dystroglycan regulates structure, proliferation and differentiation of neuroepithelial cells in the developing vertebrate CNS. Dev Biol 307:62–78PubMedCrossRefGoogle Scholar
  29. 29.
    Tsen G, Halfter W, Kröger S, Cole GJ (1995) Agrin is a heparan sulfate proteoglycan. J Biol Chem 270:3392–3399PubMedCrossRefGoogle Scholar
  30. 30.
    Eusebio A, Oliveri F, Barzaghi P, Ruegg MA (2003) Expression of mouse agrin in normal, denervated and dystrophic muscle. Neuromuscul Disord 13:408–415PubMedCrossRefGoogle Scholar
  31. 31.
    Wallace BG (1990) Inhibition of agrin-induced acetylcholine-receptor aggregation by heparin, heparan sulfate, and other polyanions. J Neurosci 10:3576–3582PubMedGoogle Scholar
  32. 32.
    Gesemann M, Denzer AJ, Ruegg MA (1995) Acetylcholine receptor aggregating activity of agrin isoforms and mapping of the active site. J Cell Biol 128:625–636PubMedCrossRefGoogle Scholar
  33. 33.
    Hopf C, Hoch W (1998) Dimerization of the muscle-specific kinase induces tyrosine phosphorylation of acetylcholine receptors and their aggregation on the surface of myotubes. J Biol Chem 273:6467–6473PubMedCrossRefGoogle Scholar
  34. 34.
    Yamamoto T, Sato T, Sugita H (1987) Antifilamin, antivinculin, and antitropomyosin antibodies in myasthenia gravis. Neurology 37:1329–1333PubMedGoogle Scholar
  35. 35.
    Lu CZ, Lu L, Hao ZS, Xia DG, Qain J, Arnason BG (1993) Antibody-secreting cells to acetylcholine receptor and to presynaptic membrane receptor in seronegative myasthenia gravis. J Neuroimmunol 43:145–149PubMedCrossRefGoogle Scholar
  36. 36.
    Simon-Chazottes D, Tutois S, Kuehn M, Evans M, Bourgade F, Cook S, Davisson MT, Guenet JL (2006) Mutations in the gene encoding the low-density lipoprotein receptor LRP4 cause abnormal limb development in the mouse. Genomics 87:673–677PubMedCrossRefGoogle Scholar
  37. 37.
    Choi HY, Dieckmann M, Herz J, Niemeier A (2009) Lrp4, a novel receptor for Dickkopf 1 and sclerostin, is expressed by osteoblasts and regulates bone growth and turnover in vivo. PLoS One 4:e7930PubMedCrossRefGoogle Scholar
  38. 38.
    Karner CM, Dietrich MF, Johnson EB, Kappesser N, Tennert C, Percin F, Wollnik B, Carroll TJ, Herz J (2010) Lrp4 regulates initiation of ureteric budding and is crucial for kidney formation–a mouse model for Cenani-Lenz syndrome. PLoS One 5:e10418PubMedCrossRefGoogle Scholar
  39. 39.
    Johnson EB, Hammer RE, Herz J (2005) Abnormal development of the apical ectodermal ridge and polysyndactyly in Megf7-deficient mice. Hum Mol Genet 14:3523–3538PubMedCrossRefGoogle Scholar
  40. 40.
    Weatherbee SD, Anderson KV, Niswander LA (2006) LDL-receptor-related protein 4 is crucial for formation of the neuromuscular junction. Development 133:4993–5000PubMedCrossRefGoogle Scholar
  41. 41.
    Wu H, Xiong WC, Mei L (2010) To build a synapse: signaling pathways in neuromuscular junction assembly. Development 137:1017–1033PubMedCrossRefGoogle Scholar
  42. 42.
    DeChiara TM, Bowen DC, Valenzuela DM, Simmons MV, Poueymirou WT, Thomas S, Kinetz E, Compton DL, Rojas E, Park JS, Smith C, Distefano PS, Glass DJ, Burden SJ, Yancopoulos GD (1996) The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85:501–512PubMedCrossRefGoogle Scholar
  43. 43.
    Li Y, Pawlik B, Elcioglu N, Aglan M, Kayserili H, Yigit G, Percin F, Goodman F, Nurnberg G, Cenani A, Urquhart J, Chung BD, Ismail S, Amr K, Aslanger AD, Becker C, Netzer C, Scambler P, Eyaid W, Hamamy H, Clayton-Smith J, Hennekam R, Nurnberg P, Herz J, Temtamy SA, Wollnik B (2010) LRP4 mutations alter Wnt/beta-catenin signaling and cause limb and kidney malformations in Cenani-Lenz syndrome. Am J Hum Genet 86:696–706PubMedCrossRefGoogle Scholar
  44. 44.
    Wang WW, Hao HJ, Gao F (2010) Detection of multiple antibodies in myasthenia gravis and its clinical significance. Chin Med J (Engl) 123:2555–2558Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Alexandra Pevzner
    • 1
  • Benedikt Schoser
    • 2
  • Katja Peters
    • 1
  • Nicoleta-Carmen Cosma
    • 1
  • Andromachi Karakatsani
    • 1
  • Berthold Schalke
    • 3
  • Arthur Melms
    • 4
  • Stephan Kröger
    • 1
    Email author
  1. 1.Department of Physiological Genomics, Institute for PhysiologyLudwig-Maximilians UniversityMunichGermany
  2. 2.Department of Neurology, Friedrich-Baur-InstituteLudwig-Maximilians UniversityMunichGermany
  3. 3.Department of NeurologyUniversity of RegensburgRegensburgGermany
  4. 4.Department of NeurologyUniversity of TübingenTübingenGermany

Personalised recommendations