Journal of Neurology

, Volume 258, Issue 10, pp 1747–1762 | Cite as

Treatment of multiple sclerosis: current concepts and future perspectives

  • Dorothea Buck
  • Bernhard HemmerEmail author


Currently, several disease-modifying therapies for the treatment of multiple sclerosis are established and more are likely to be introduced. These treatment options differ with respect to their application profile, mechanism of action, efficacy, safety, and tolerance. Here, we review current concepts of MS therapies, report recent results of clinical trials, and discuss emerging treatment options.


Multiple sclerosis Treatment Immunotherapy Clinical trials 



Information of ongoing trials was retrieved from the Data. Dorothea Buck and Bernhard Hemmer were supported by a grant from the German Ministry for Education and Research (BMBF, “German Competence Network Multiple Sclerosis” [KKNMS], Control-MS, 01GI0917).

Conflict of interest

D. Buck has received personal compensation as a speaker from Biogen Idec and Merck-Serono and research support from Merck-Serono. B. Hemmer has served on scientific advisory boards for Bayer Schering Pharma, Biogen Idec, Roche, Novartis, and Merck Serono; serves as a consultant for Gerson Lehrman Group; and has received research support from Bayer Schering Pharma, Biogen Idec, Roche, Novartis, Merck Serono, Metanomics Health GmbH, Protagen AG, Deutsche Forschungsgemeinschaft (DFG), Bundesministerium für Bildung und Forschung (BMBF), and Hertie Foundation.


  1. 1.
    Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23:683–747PubMedCrossRefGoogle Scholar
  2. 2.
    Hemmer B, Nessler S, Zhou D, Kieseier B, Hartung HP (2006) Immunopathogenesis and immunotherapy of multiple sclerosis. Nat Clin Pract Neurol 2:201–211PubMedCrossRefGoogle Scholar
  3. 3.
    Kinkel RP, Kollman C, O’Connor P, Murray TJ, Simon J et al (2006) IM interferon beta-1a delays definite multiple sclerosis 5 years after a first demyelinating event. Neurology 66:678–684PubMedCrossRefGoogle Scholar
  4. 4.
    Kappos L, Freedman MS, Polman CH, Edan G, Hartung HP et al (2007) Effect of early versus delayed interferon beta-1b treatment on disability after a first clinical event suggestive of multiple sclerosis: a 3-year follow-up analysis of the BENEFIT study. Lancet 370:389–397PubMedCrossRefGoogle Scholar
  5. 5.
    Comi G, Filippi M, Wolinsky JS (2001) European/Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging—measured disease activity and burden in patients with relapsing multiple sclerosis. European/Canadian Glatiramer Acetate Study Group. Ann Neurol 49:290–297PubMedCrossRefGoogle Scholar
  6. 6.
    Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Bruck W (2002) Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125:2202–2212PubMedCrossRefGoogle Scholar
  7. 7.
    Lukas C, Minneboo A, de Groot V, Moraal B, Knol DL, et al (2010) Early central atrophy rate predicts 5 year clinical outcome in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2010/09/10 edn pp 1351–1356Google Scholar
  8. 8.
    Paty DW, Li DK (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group. Neurology 43:662–667PubMedGoogle Scholar
  9. 9.
    Ebers GC, PRISMS (Prevention of Relapses and Disability by Interferon β-1a Subcutaneously in Multiple Sclerosis) Study Group (1998) Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. Lancet 352:1498–1504Google Scholar
  10. 10.
    Jacobs LD, Cookfair DL, Rudick RA, Herndon RM, Richert JR et al (1996) Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann Neurol 39:285–294PubMedCrossRefGoogle Scholar
  11. 11.
    Stuve O, Bennett JL, Hemmer B, Wiendl H, Racke MK et al (2008) Pharmacological treatment of early multiple sclerosis. Drugs 68:73–83PubMedCrossRefGoogle Scholar
  12. 12.
    The IFNB Multiple Sclerosis Study Group (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43:655–661Google Scholar
  13. 13.
    Kappos L, Polman CH, Freedman MS, Edan G, Hartung HP et al (2006) Treatment with interferon beta-1b delays conversion to clinically definite and McDonald MS in patients with clinically isolated syndromes. Neurology 67:1242–1249PubMedCrossRefGoogle Scholar
  14. 14.
    Jacobs LD, Beck RW, Simon JH, Kinkel RP, Brownscheidle CM et al (2000) Intramuscular interferon beta-1a therapy initiated during a first demyelinating event in multiple sclerosis. CHAMPS Study Group. N Engl J Med 343:898–904PubMedCrossRefGoogle Scholar
  15. 15.
    Reder AT, Ebers GC, Traboulsee A, Li D, Langdon D et al (2010) Cross-sectional study assessing long-term safety of interferon-beta-1b for relapsing-remitting MS. Neurology 74:1877–1885PubMedCrossRefGoogle Scholar
  16. 16.
    Foulds B, Richman S, Glick G, Onigman T, Hyde R (2010) Pregnancy outcomes from the Avonex (interferon beta-1a) Pregnancy Exposure Registry. Mult Scler vol 16 Suppl 10, Poster 894 at ECTRIMS 2010Google Scholar
  17. 17.
    Schellekens H (2002) Immunogenicity of therapeutic proteins: clinical implications and future prospects. Clin Ther 24:1720–1740 (discussion 1719)PubMedCrossRefGoogle Scholar
  18. 18.
    Sellebjerg F, Krakauer M, Hesse D, Ryder LP, Alsing I et al (2009) Identification of new sensitive biomarkers for the in vivo response to interferon-beta treatment in multiple sclerosis using DNA-array evaluation. Eur J Neurol 16:1291–1298PubMedCrossRefGoogle Scholar
  19. 19.
    Hesse D, Sellebjerg F, Sorensen PS (2009) Absence of MxA induction by interferon beta in patients with MS reflects complete loss of bioactivity. Neurology 73:372–377PubMedCrossRefGoogle Scholar
  20. 20.
    Pachner AR, Warth JD, Pace A, Goelz S (2009) Effect of neutralizing antibodies on biomarker responses to interferon beta: the INSIGHT study. Neurology 73:1493–1500PubMedCrossRefGoogle Scholar
  21. 21.
    Polman CH, Bertolotto A, Deisenhammer F, Giovannoni G, Hartung HP et al (2010) Recommendations for clinical use of data on neutralising antibodies to interferon-beta therapy in multiple sclerosis. Lancet Neurol 9:740–750PubMedCrossRefGoogle Scholar
  22. 22.
    Deisenhammer F (2009) Neutralizing antibodies to interferon-beta and other immunological treatments for multiple sclerosis: prevalence and impact on outcomes. CNS Drugs 23:379–396PubMedCrossRefGoogle Scholar
  23. 23.
    Bertolotto A, Malucchi S, Milano E, Castello A, Capobianco M et al (2000) Interferon beta neutralizing antibodies in multiple sclerosis: neutralizing activity and cross-reactivity with three different preparations. Immunopharmacology 48:95–100PubMedCrossRefGoogle Scholar
  24. 24.
    Sorensen PS, Koch-Henriksen N, Ross C, Clemmesen KM, Bendtzen K (2005) Appearance and disappearance of neutralizing antibodies during interferon-beta therapy. Neurology 65:33–39PubMedCrossRefGoogle Scholar
  25. 25.
    Petersen B, Bendtzen K, Koch-Henriksen N, Ravnborg M, Ross C et al (2006) Persistence of neutralizing antibodies after discontinuation of IFNbeta therapy in patients with relapsing-remitting multiple sclerosis. Mult Scler 12:247–252PubMedCrossRefGoogle Scholar
  26. 26.
    van der Voort LF, Gilli F, Bertolotto A, Knol DL, Uitdehaag BM, et al Clinical effect of neutralizing antibodies to interferon beta that persist long after cessation of therapy for multiple sclerosis. Arch Neurol 67:402–407Google Scholar
  27. 27.
    Hoffmann S, Cepok S, Grummel V, Lehmann-Horn K, Hackermuller J et al (2008) HLA-DRB1*0401 and HLA-DRB1*0408 are strongly associated with the development of antibodies against interferon-beta therapy in multiple sclerosis. Am J Hum Genet 83:219–227PubMedCrossRefGoogle Scholar
  28. 28.
    Buck D, Cepok S, Hoffmann S, Grummel V, Jochim A, Berthele A, Hartung HP, Wassmuth R, Hemmer B (2011) Influence of the HLA-DRB1 Genotype on antibody development to Interferon Beta in Multiple Sclerosis. Arch Neurol 68:480–487Google Scholar
  29. 29.
    Panitch H, Goodin DS, Francis G, Chang P, Coyle PK et al (2002) Randomized, comparative study of interferon beta-1a treatment regimens in MS: the EVIDENCE Trial. Neurology 59:1496–1506PubMedGoogle Scholar
  30. 30.
    Durelli L, Verdun E, Barbero P, Bergui M, Versino E et al (2002) Every-other-day interferon beta-1b versus once-weekly interferon beta-1a for multiple sclerosis: results of a 2-year prospective randomised multicentre study (INCOMIN). Lancet 359:1453–1460PubMedCrossRefGoogle Scholar
  31. 31.
    Baker DP, Pepinsky RB, Brickelmaier M, Gronke RS, Hu X et al (2010) PEGylated interferon beta-1a: meeting an unmet medical need in the treatment of relapsing multiple sclerosis. J Interferon Cytokine Res 30:777–785PubMedCrossRefGoogle Scholar
  32. 32.
    Arnon R, Aharoni R (2004) Mechanism of action of glatiramer acetate in multiple sclerosis and its potential for the development of new applications. Proc Natl Acad Sci USA 101(Suppl 2):14593–14598PubMedCrossRefGoogle Scholar
  33. 33.
    Weber MS, Prod’homme T, Youssef S, Dunn SE, Rundle CD et al (2007) Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat Med 13:935–943PubMedCrossRefGoogle Scholar
  34. 34.
    Johnson KP, Brooks BR, Cohen JA, Ford CC, Goldstein J et al (1995) Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology 45:1268–1276PubMedGoogle Scholar
  35. 35.
    Comi G, Martinelli V, Rodegher M, Moiola L, Bajenaru O et al (2009) Effect of glatiramer acetate on conversion to clinically definite multiple sclerosis in patients with clinically isolated syndrome (PreCISe study): a randomised, double-blind, placebo-controlled trial. Lancet 374:1503–1511PubMedCrossRefGoogle Scholar
  36. 36.
    Ford C, Goodman AD, Johnson K, Kachuck N, Lindsey JW et al (2010) Continuous long-term immunomodulatory therapy in relapsing multiple sclerosis: results from the 15-year analysis of the US prospective open-label study of glatiramer acetate. Mult Scler 16:342–350PubMedCrossRefGoogle Scholar
  37. 37.
    O’Connor P, Filippi M, Arnason B, Comi G, Cook S et al (2009) 250 microg or 500 microg interferon beta-1b versus 20 mg glatiramer acetate in relapsing-remitting multiple sclerosis: a prospective, randomised, multicentre study. Lancet Neurol 8:889–897PubMedCrossRefGoogle Scholar
  38. 38.
    Mikol DD, Barkhof F, Chang P, Coyle PK, Jeffery DR et al (2008) Comparison of subcutaneous interferon beta-1a with glatiramer acetate in patients with relapsing multiple sclerosis (the REbif vs glatiramer acetate in relapsing ms disease [REGARD] study): a multicentre, randomised, parallel, open-label trial. Lancet Neurol 7:903–914PubMedCrossRefGoogle Scholar
  39. 39.
    Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L et al (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354:899–910PubMedCrossRefGoogle Scholar
  40. 40.
    Rudick RA, Stuart WH, Calabresi PA, Confavreux C, Galetta SL et al (2006) Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med 354:911–923PubMedCrossRefGoogle Scholar
  41. 41.
    Major EO (2010) Progressive multifocal leukoencephalopathy in patients on immunomodulatory therapies. Annu Rev Med 61:35–47PubMedCrossRefGoogle Scholar
  42. 42.
    Gorelik L, Lerner M, Bixler S, Crossman M, Schlain B et al (2010) Anti-JC virus antibodies: implications for PML risk stratification. Ann Neurol 68:295–303PubMedCrossRefGoogle Scholar
  43. 43.
    Monaco MC, Atwood WJ, Gravell M, Tornatore CS, Major EO (1996) JC virus infection of hematopoietic progenitor cells, primary B lymphocytes, and tonsillar stromal cells: implications for viral latency. J Virol 70:7004–7012PubMedGoogle Scholar
  44. 44.
    Ferrante P, Caldarelli-Stefano R, Omodeo-Zorini E, Vago L, Boldorini R et al (1995) PCR detection of JC virus DNA in brain tissue from patients with and without progressive multifocal leukoencephalopathy. J Med Virol 47:219–225PubMedCrossRefGoogle Scholar
  45. 45.
    Stuve O, Marra CM, Jerome KR, Cook L, Cravens PD et al (2006) Immune surveillance in multiple sclerosis patients treated with natalizumab. Ann Neurol 59:743–747PubMedCrossRefGoogle Scholar
  46. 46.
    Chen Y, Bord E, Tompkins T, Miller J, Tan CS et al (2009) Asymptomatic reactivation of JC virus in patients treated with natalizumab. N Engl J Med 361:1067–1074PubMedCrossRefGoogle Scholar
  47. 47.
    Jilek S, Jaquiery E, Hirsch HH, Lysandropoulos A, Canales M et al (2010) Immune responses to JC virus in patients with multiple sclerosis treated with natalizumab: a cross-sectional and longitudinal study. Lancet Neurol 9:264–272PubMedCrossRefGoogle Scholar
  48. 48.
    Rudick RA, O’Connor PW, Polman CH, Goodman AD, Ray SS et al (2010) Assessment of JC virus DNA in blood and urine from natalizumab-treated patients. Ann Neurol 68:304–310PubMedCrossRefGoogle Scholar
  49. 49.
    Miller D, Weber T, Montalban X, Grove R, Dua P, Wardell C, Graff O (2010) Phase II trial of firategrast shows that oral anti-alpha4 therapy can suppress new MRI lesions in relapsing–remitting multiple sclerosis. Multiple sclerosis, abstract at ECTRIMS 2010 (Data on file)Google Scholar
  50. 50.
    Marriott JJ, Miyasaki JM, Gronseth G, O’Connor PW (2010) Evidence report: the efficacy and safety of mitoxantrone (Novantrone) in the treatment of multiple sclerosis: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 74:1463–1470PubMedCrossRefGoogle Scholar
  51. 51.
    Hartung HP, Gonsette R, Konig N, Kwiecinski H, Guseo A et al (2002) Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet 360:2018–2025PubMedCrossRefGoogle Scholar
  52. 52.
    Martinelli Boneschi F, Rovaris M, Capra R, Comi G (2005) Mitoxantrone for multiple sclerosis. Cochrane Database Syst Rev:CD002127Google Scholar
  53. 53.
    Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y et al (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427:355–360PubMedCrossRefGoogle Scholar
  54. 54.
    Brinkmann V, Billich A, Baumruker T, Heining P, Schmouder R et al (2010) Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov 9:883–897PubMedCrossRefGoogle Scholar
  55. 55.
    Foster CA, Howard LM, Schweitzer A, Persohn E, Hiestand PC et al (2007) Brain penetration of the oral immunomodulatory drug FTY720 and its phosphorylation in the central nervous system during experimental autoimmune encephalomyelitis: consequences for mode of action in multiple sclerosis. J Pharmacol Exp Ther 323:469–475PubMedCrossRefGoogle Scholar
  56. 56.
    Kowarik MC, Pellkofer HL, Cepok S, Korn T, Kümpfel T, Buck D, Hohlfeld R, Berthele A, Hemmer B (2011) Differential effects of fingolimod (FTY720) therapy on immune cells in the cerebrospinal fluid and blood of multiple sclerosis patients. Neurology 76:1214–1221Google Scholar
  57. 57.
    Kappos L, Radue EW, O’Connor P, Polman C, Hohlfeld R et al (2010) A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 362:387–401PubMedCrossRefGoogle Scholar
  58. 58.
    Cohen JA, Barkhof F, Comi G, Hartung HP, Khatri BO et al (2010) Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med 362:402–415PubMedCrossRefGoogle Scholar
  59. 59.
    Schmouder R, Aradhye S, O′Connor P, Kappos L (2006) Pharmacodynamic effects of oral fingolimod (FTY720). Poster at ECTRIMSGoogle Scholar
  60. 60.
    Schwarz A, Korporal M, Hosch W, Max R, Wildemann B (2010) Critical vasospasm during fingolimod (FTY720) treatment in a patient with multiple sclerosis. Neurology 74:2022–2024PubMedCrossRefGoogle Scholar
  61. 61.
    Leypoldt F, Munchau A, Moeller F, Bester M, Gerloff C et al (2009) Hemorrhaging focal encephalitis under fingolimod (FTY720) treatment: a case report. Neurology 72:1022–1024PubMedCrossRefGoogle Scholar
  62. 62.
    Beutler E (1992) Cladribine (2-chlorodeoxyadenosine). Lancet 340:952–956PubMedCrossRefGoogle Scholar
  63. 63.
    Liliemark J (1997) The clinical pharmacokinetics of cladribine. Clin Pharmacokinet 32:120–131PubMedCrossRefGoogle Scholar
  64. 64.
    Beutler E (1994) New chemotherapeutic agent: 2-chlorodeoxyadenosine. Semin Hematol 31:40–45PubMedGoogle Scholar
  65. 65.
    Romine JS, Sipe JC, Koziol JA, Zyroff J, Beutler E (1999) A double-blind, placebo-controlled, randomized trial of cladribine in relapsing-remitting multiple sclerosis. Proc Assoc Am Physicians 111:35–44PubMedCrossRefGoogle Scholar
  66. 66.
    Giovannoni G, Comi G, Cook S, Rammohan K, Rieckmann P et al (2010) A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med 362:416–426PubMedCrossRefGoogle Scholar
  67. 67.
    Bartlett RR, Dimitrijevic M, Mattar T, Zielinski T, Germann T et al (1991) Leflunomide (HWA 486), a novel immunomodulating compound for the treatment of autoimmune disorders and reactions leading to transplantation rejection. Agents Actions 32:10–21PubMedCrossRefGoogle Scholar
  68. 68.
    Alcorn N, Saunders S, Madhok R (2009) Benefit-risk assessment of leflunomide: an appraisal of leflunomide in rheumatoid arthritis 10 years after licensing. Drug Saf 32:1123–1134PubMedCrossRefGoogle Scholar
  69. 69.
    Williamson RA, Yea CM, Robson PA, Curnock AP, Gadher S et al (1995) Dihydroorotate dehydrogenase is a high affinity binding protein for A77 1726 and mediator of a range of biological effects of the immunomodulatory compound. J Biol Chem 270:22467–22472PubMedCrossRefGoogle Scholar
  70. 70.
    Claussen MC, Korn T (2011) Immune mechanisms of new therapeutic strategies in MS - Teriflunomide. Clin Immunol (in press)Google Scholar
  71. 71.
    Elder RT, Xu X, Williams JW, Gong H, Finnegan A et al (1997) The immunosuppressive metabolite of leflunomide, A77 1726, affects murine T cells through two biochemical mechanisms. J Immunol 159:22–27PubMedGoogle Scholar
  72. 72.
    Hamilton LC, Vojnovic I, Warner TD (1999) A771726, the active metabolite of leflunomide, directly inhibits the activity of cyclo-oxygenase-2 in vitro and in vivo in a substrate-sensitive manner. Br J Pharmacol 127:1589–1596PubMedCrossRefGoogle Scholar
  73. 73.
    O’Connor P, Wolinsky J, Confavreux C, Comi G, Kappos L, Olsson TP, Benzerdjeb H, Wamil B, Wang L, Miller A and Freedman MS (2010) A placebo-controlled phase III trial (TEMSO) of oral teriflunomide in relapsing multiple sclerosis: clinical efficacy and safety outcomes. Multiple Sclerosis, Abstract at ECTRIMS 2010 (Data on file)Google Scholar
  74. 74.
    Wolinsky J, O’Connor P, Confavreux C, Comi G, Kappos L, Olsson T, Truffinet P, Wang L, Miller A and Freedman MS (2010) A placebo-controlled phase III trial (TEMSO) of oral teriflunomide in relapsing multiple sclerosis: magnetic resonance imaging (MRI) outcomes. Multiple Sclerosis, Abstract at ECTRIMS 2010 (Data on file)Google Scholar
  75. 75.
    Suissa S, Hudson M, Ernst P (2006) Leflunomide use and the risk of interstitial lung disease in rheumatoid arthritis. Arthritis Rheum 54:1435–1439PubMedCrossRefGoogle Scholar
  76. 76.
    Warnatz K, Peter HH, Schumacher M, Wiese L, Prasse A et al (2003) Infectious CNS disease as a differential diagnosis in systemic rheumatic diseases: three case reports and a review of the literature. Ann Rheum Dis 62:50–57PubMedCrossRefGoogle Scholar
  77. 77.
    Chambers CD, Johnson DL, Robinson LK, Braddock SR, Xu R et al (2010) Birth outcomes in women who have taken leflunomide during pregnancy. Arthritis Rheum 62:1494–1503PubMedGoogle Scholar
  78. 78.
    Freedman M, Byrnes WJ, Confavreux C, Comi G, Frangin G, Kappos L, Olsson T, Miller A, O’Connor PW (2009) Oral teriflunomide or placebo added to interferon beta for 6 months in patients with relapsing multiple sclerosis: safety and efficacy results. Mult Scl 15:S273Google Scholar
  79. 79.
    Freedman M, Frangin G, Confavreux C, Comi G, Byrnes WJ, Kappos L, Olsson T, Miller A, O’Connor PW (2010) Oral teriflunomide or placebo added to glatiramer acetate for 6 months in patients with relapsing multiple sclerosis: safety and efficacy results. Neurology 74:A293Google Scholar
  80. 80.
    Tan IL, Lycklama a Nijeholt GJ, Polman CH, Ader HJ, Barkhof F (2000) Linomide in the treatment of multiple sclerosis: MRI results from prematurely terminated phase-III trials. Mult Scler 6:99–104PubMedGoogle Scholar
  81. 81.
    Polman C, Barkhof F, Sandberg-Wollheim M, Linde A, Nordle O et al (2005) Treatment with laquinimod reduces development of active MRI lesions in relapsing MS. Neurology 64:987–991PubMedCrossRefGoogle Scholar
  82. 82.
    Tselis A (2010) Laquinimod, a new oral autoimmune modulator for the treatment of relapsing-remitting multiple sclerosis. Curr Opin Investig Drugs 11:577–585PubMedGoogle Scholar
  83. 83.
    Comi G, Pulizzi A, Rovaris M, Abramsky O, Arbizu T et al (2008) Effect of laquinimod on MRI-monitored disease activity in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study. Lancet 371:2085–2092PubMedCrossRefGoogle Scholar
  84. 84.
    Comi G, Abramsky O, Arbizu T, Boyko A, Gold R et al (2010) Oral laquinimod in patients with relapsing-remitting multiple sclerosis: 36-week double-blind active extension of the multi-centre, randomized, double-blind, parallel-group placebo-controlled study. Mult Scler 16:1360–1366PubMedCrossRefGoogle Scholar
  85. 85.
    Reich K, Thaci D, Mrowietz U, Kamps A, Neureither M et al (2009) Efficacy and safety of fumaric acid esters in the long-term treatment of psoriasis—a retrospective study (FUTURE). J Dtsch Dermatol Ges 7:603–611PubMedGoogle Scholar
  86. 86.
    Moharregh-Khiabani D, Linker RA, Gold R, Stangel M (2009) Fumaric acid and its esters: an emerging treatment for multiple sclerosis. Curr Neuropharmacol 7:60–64PubMedCrossRefGoogle Scholar
  87. 87.
    Kappos L, Gold R, Miller DH, Macmanus DG, Havrdova E et al (2008) Efficacy and safety of oral fumarate in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study. Lancet 372:1463–1472PubMedCrossRefGoogle Scholar
  88. 88.
    Waldmann TA (2007) Anti-Tac (daclizumab, Zenapax) in the treatment of leukemia, autoimmune diseases, and in the prevention of allograft rejection: a 25-year personal odyssey. J Clin Immunol 27:1–18PubMedCrossRefGoogle Scholar
  89. 89.
    Martin R (2008) Humanized anti-CD25 antibody treatment with daclizumab in multiple sclerosis. Neurodegener Dis 5:23–26PubMedCrossRefGoogle Scholar
  90. 90.
    Wynn D, Kaufman M, Montalban X, Vollmer T, Simon J et al (2010) Daclizumab in active relapsing multiple sclerosis (CHOICE study): a phase 2, randomised, double-blind, placebo-controlled, add-on trial with interferon beta. Lancet Neurol 9:381–390PubMedCrossRefGoogle Scholar
  91. 91.
    Bielekova B, Richert N, Howard T, Blevins G, Markovic-Plese S et al (2004) Humanized anti-CD25 (daclizumab) inhibits disease activity in multiple sclerosis patients failing to respond to interferon beta. Proc Natl Acad Sci USA 101:8705–8708PubMedCrossRefGoogle Scholar
  92. 92.
    Rojas MA, Carlson NG, Miller TL, Rose JW (2009) Long-term daclizumab therapy in relapsing-remitting multiple sclerosis. Ther Adv Neurol Disord 2:291–297PubMedCrossRefGoogle Scholar
  93. 93.
    Ali EN, Healy BC, Stazzone LA, Brown BA, Weiner HL et al (2009) Daclizumab in treatment of multiple sclerosis patients. Mult Scler 15:272–274PubMedCrossRefGoogle Scholar
  94. 94.
    Bielekova B, Howard T, Packer AN, Richert N, Blevins G et al (2009) Effect of anti-CD25 antibody daclizumab in the inhibition of inflammation and stabilization of disease progression in multiple sclerosis. Arch Neurol 66:483–489PubMedCrossRefGoogle Scholar
  95. 95.
    Jones JL, Coles AJ (2008) Campath-1H treatment of multiple sclerosis. Neurodegener Dis 5:27–31PubMedCrossRefGoogle Scholar
  96. 96.
    Gilleece MH, Dexter TM (1993) Effect of Campath-1H antibody on human hematopoietic progenitors in vitro. Blood 82:807–812PubMedGoogle Scholar
  97. 97.
    Coles AJ, Cox A, Le Page E, Jones J, Trip SA et al (2006) The window of therapeutic opportunity in multiple sclerosis: evidence from monoclonal antibody therapy. J Neurol 253:98–108PubMedCrossRefGoogle Scholar
  98. 98.
    Jones JL, Phuah CL, Cox AL, Thompson SA, Ban M et al (2009) IL-21 drives secondary autoimmunity in patients with multiple sclerosis, following therapeutic lymphocyte depletion with alemtuzumab (Campath-1H). J Clin Invest 119:2052–2061PubMedGoogle Scholar
  99. 99.
    Coles A, Deans J, Compston A (2004) Campath-1H treatment of multiple sclerosis: lessons from the bedside for the bench. Clin Neurol Neurosurg 106:270–274PubMedCrossRefGoogle Scholar
  100. 100.
    Hirst CL, Pace A, Pickersgill TP, Jones R, McLean BN et al (2008) Campath 1-H treatment in patients with aggressive relapsing remitting multiple sclerosis. J Neurol 255:231–238PubMedCrossRefGoogle Scholar
  101. 101.
    Coles AJ, Compston DA, Selmaj KW, Lake SL, Moran S et al (2008) Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med 359:1786–1801PubMedCrossRefGoogle Scholar
  102. 102.
    Jones JL, Anderson JM, Phuah CL, Fox EJ, Selmaj K et al (2010) Improvement in disability after alemtuzumab treatment of multiple sclerosis is associated with neuroprotective autoimmunity. Brain 133:2232–2247PubMedCrossRefGoogle Scholar
  103. 103.
    Thompson SA, Jones JL, Cox AL, Compston DA, Coles AJ (2010) B-cell reconstitution and BAFF after alemtuzumab (Campath-1H) treatment of multiple sclerosis. J Clin Immunol 30:99–105PubMedCrossRefGoogle Scholar
  104. 104.
    Clatworthy MR, Wallin EF, Jayne DR (2008) Anti-glomerular basement membrane disease after alemtuzumab. N Engl J Med 359:768–769PubMedCrossRefGoogle Scholar
  105. 105.
    Pace AA, Zajicek JP (2009) Melanoma following treatment with alemtuzumab for multiple sclerosis. Eur J Neurol 16:e70–e71PubMedCrossRefGoogle Scholar
  106. 106.
    Waubant E (2008) Spotlight on anti-CD20. Int MS J 15:19–25PubMedGoogle Scholar
  107. 107.
    Reff ME, Carner K, Chambers KS, Chinn PC, Leonard JE et al (1994) Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 83:435–445PubMedGoogle Scholar
  108. 108.
    Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J et al (2008) B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358:676–688PubMedCrossRefGoogle Scholar
  109. 109.
    Bar-Or A, Calabresi PA, Arnold D, Markowitz C, Shafer S et al (2008) Rituximab in relapsing-remitting multiple sclerosis: a 72-week, open-label, phase I trial. Ann Neurol 63:395–400PubMedCrossRefGoogle Scholar
  110. 110.
    Piccio L, Naismith RT, Trinkaus K, Klein RS, Parks BJ et al (2010) Changes in B- and T-lymphocyte and chemokine levels with rituximab treatment in multiple sclerosis. Arch Neurol 67:707–714PubMedCrossRefGoogle Scholar
  111. 111.
    Hawker K, O’Connor P, Freedman MS, Calabresi PA, Antel J et al (2009) Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol 66:460–471PubMedCrossRefGoogle Scholar
  112. 112.
    Carson KR, Evens AM, Richey EA, Habermann TM, Focosi D et al (2009) Progressive multifocal leukoencephalopathy after rituximab therapy in HIV-negative patients: a report of 57 cases from the Research on Adverse Drug Events and Reports project. Blood 113:4834–4840PubMedCrossRefGoogle Scholar
  113. 113.
    Genovese MC, Kaine JL, Lowenstein MB, Del Giudice J, Baldassare A et al (2008) Ocrelizumab, a humanized anti-CD20 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: a phase I/II randomized, blinded, placebo-controlled, dose-ranging study. Arthritis Rheum 58:2652–2661PubMedCrossRefGoogle Scholar
  114. 114.
    Kappos L, Calabresi P, O’Connor P, Bar-Or A, Li D, Barkhof F, Yin M, Glanzman R, Tinbergen J, Hauser S (2010) Efficacy and safety of ocrelizumab in patients with relapsing–remitting multiple sclerosis: results of a phase II randomised placebo-controlled multicentre trial. Multiple Sclerosis, Abstract at ECTRIMS 2010 (Data on file)Google Scholar
  115. 115.
    Soelberg Sorensen P, Drulovic J, Havrdova E, Lisby S, Graff O, Shackelford S (2010) Magnetic resonance imaging (MRI) efficacy of ofatumumab in relapsing-remitting multiple sclerosis (RRMS—24-week results of a phase II study. Multiple sclerosis, Abstract at ECTRIMS 2010 (Data on file)Google Scholar
  116. 116.
    Alonso A, Hernan MA (2008) Temporal trends in the incidence of multiple sclerosis: a systematic review. Neurology 71:129–135PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Neurology, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany

Personalised recommendations