Journal of Neurology

, 258:1393 | Cite as

Functions of the nigrostriatal dopaminergic synapse and the use of neurotransplantation in Parkinson’s disease

Review

Abstract

While pharmaceutical options remain the overwhelmingly accepted treatment of choice for neurological and psychiatric diseases, significant accomplishments in regenerative neuroscience research have demonstrated the potential of cellular and synaptic functional repair in future therapies. Parkinson’s disease stands out as an example in which repair by dopaminergic neurons appears a viable potential therapy. This article describes the basic neurobiological underpinnings of the rationale for cell therapy for Parkinson’s disease and the challenges ahead for the use of regenerative medicine in the treatment for this disease.

Keywords

Parkinson’s Movement disorders Neurotransplantation Foetal grafting Dyskinesias Normal striatum 

References

  1. 1.
    Carlsson A, Lindqvist M, Magnusson T (1957) 3, 4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 180(4596):1200PubMedCrossRefGoogle Scholar
  2. 2.
    Matsuda W, Furuta T, Nakamura K et al (2009) Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neuroscience 29(2):444–453CrossRefGoogle Scholar
  3. 3.
    Guzman J, Padilla JS, Savio Chan C, James Surmeier D (2009) Robust pacemaking in substantia nigra dopaminergic neurons. J Neuroscience 29(35):11011–11019CrossRefGoogle Scholar
  4. 4.
    Paul Greengard’s Nobel Lecture, Les Prix Nobel 2000Google Scholar
  5. 5.
    Angela Cenci M (2007) Dopamine dysregulation of movement control in l-dopa-induced dyskinesias. Trends Neurosci 30(5):236–243PubMedCrossRefGoogle Scholar
  6. 6.
    Nagatsu T, Sawada M (2009) l-dopa therapy for Parkinson’s disease: past, present and future. Parkinsonism Relat Disord 15(S1):S3–S8Google Scholar
  7. 7.
    Hirsch E, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurones are differentially susceptible to degeneration in Parkinson’s disease. Nature 334:345–348PubMedCrossRefGoogle Scholar
  8. 8.
    Surmeier DJ (2007) Calcium, ageing, and neuronal vulnerability in Parkinson’s disease. Lancet Neurology 6:933–938PubMedCrossRefGoogle Scholar
  9. 9.
    Nedergaard S, Flatman JA, Engberg I (1993) Nifedipine and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones. J Physiol 466:727–747PubMedGoogle Scholar
  10. 10.
    Chan CS, Guzman JN, Surmeier DJ et al (2007) “Rejuvenation” protects neurons in mouse models of Parkinson’s disease. Nature 447:1081–1086PubMedCrossRefGoogle Scholar
  11. 11.
    Garris PA, Ciolkowski EL, Pastore P, Wightman RM (1994) Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain. J Neurosci 14:6084–6093PubMedGoogle Scholar
  12. 12.
    Jones SR, Gainetdinov RR, Jaber M, Caron et al (1998) Profound neuronal plasticity in response to inactivation of the dopamine receptor. Proc Natl Acad Sci USA 95:4029–4034PubMedCrossRefGoogle Scholar
  13. 13.
    Herve D, Rogard M, Levi-Strauss M (1995) Molecular analysis of the multiple Golf subunit mRNAs in the rat brain. Brain Res Mole Brain Res 32(1):125–134CrossRefGoogle Scholar
  14. 14.
    Svenningsson P, Nishi A, Fisone G, Greengard P et al (2004) DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol 44:269–296PubMedCrossRefGoogle Scholar
  15. 15.
    Tseng KY, O’Connell P (2004) Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. J Neurosci 24:5131–5139PubMedCrossRefGoogle Scholar
  16. 16.
    Surmeier DJ, Ding J, Shen W et al (2007) D1 and D2 dopamine receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurones. Trends Neurosci 30(5):228–235PubMedCrossRefGoogle Scholar
  17. 17.
    Allen Snyder GL, PB Fienberg AA, Greengard P et al (2000) Regulation of phosphorylation of the GluR1 AMPA receptor in the neostriatum by dopamine and psychostimulants in vivo. J Neurosci 20:4480–4488PubMedGoogle Scholar
  18. 18.
    Hallett PJ, Spoelgen R, Dunah AW et al (2006) Dopamine D1 activation potentiates striatal NMDA receptors by tyrosine phosphorylation-dependent subunit trafficking. J Neurosci 26:4690–4700PubMedCrossRefGoogle Scholar
  19. 19.
    Gerfen CR (2003) Dopamine receptor supersensitivity in the dopamine-depleted striatum animal model of Parkinson’s disease. The Neurosci 9(6):455–462CrossRefGoogle Scholar
  20. 20.
    Pisani A, Centonze D, Bernardi G, Calabresi P (2005) Striatal synaptic plasticity: implications for motor learning and Parkinson’s disease. Mov Disord 20(4):395–402PubMedCrossRefGoogle Scholar
  21. 21.
    De la Fuente-Fernandez R (2007) Presynaptic mechanisms of motor complications in Parkinson’s disease. Arch Neurol 64:141–142CrossRefGoogle Scholar
  22. 22.
    Robertson GS, Vincent SR, Fibiger HC (1990) Striatonigral projection neurons contain D1 dopamine receptor-activated c-fos. Brain Res 523:288–290PubMedCrossRefGoogle Scholar
  23. 23.
    Berke JD, Paletzki RF, Gerfen CR et al (1998) A complex program of striatal gene expression induced by dopaminergic stimulation. J Neurosci 18:5301–5310PubMedGoogle Scholar
  24. 24.
    Impey S, Obrietan K, Storm DR (1999) Making new connections: role of ERK. MAP kinase signaling in neuronal plasticity. Neuron 23(1):11–14PubMedCrossRefGoogle Scholar
  25. 25.
    Gerfen CR, Miyachi S, Paletzi R, Brown P (2002) D1 dopamine receptor-supsensitivity in the dopamine-depleted striatum striatum results from a switch in the regulation of ERK1/2MAP kinase. J Neurosci 22:5042–5054PubMedGoogle Scholar
  26. 26.
    Gubellini P, Saulle E, Centonze D et al (2003) Corticostriatal LTP requires combined mGluR1 and mGluR5 activation. Neuropharmacology 44:8–16PubMedCrossRefGoogle Scholar
  27. 27.
    Centonze D, Grande C, Saulle E et al (2003) Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity. J Neurosci 23:8506–8512PubMedGoogle Scholar
  28. 28.
    Picconi B, Centonze D, Hakansson K et al (2003) Loss of bidirectional striatal synaptic plasticity in l-dopa induced dyskinesias. Nat Neurosci 6:501–506PubMedGoogle Scholar
  29. 29.
    Gubellini P, Saulle E, Centonze D et al (2001) Selective involvement of mGlu1 receptors in corticostriatal LTD. Neuropharmacologu 40:839–846CrossRefGoogle Scholar
  30. 30.
    Lindefors N, Ungerstedt U (1990) Bilateral regulation of glutamate tissue and extracellular levels in the caudate-putamen by midbrain dopamine neurons. Neurosci Lett 115:248–252PubMedCrossRefGoogle Scholar
  31. 31.
    Anglade P, Mouatt-Prigent A, Agid Y et al (1996) Synaptic plasticity in the caudate nucleus of patients with Parkinson’s disease. Neurodegeneration 5:121–128PubMedCrossRefGoogle Scholar
  32. 32.
    De la Fuente-Fernandez R, Schulzer M, Mak E, Calne DB, Stoessl AJ (2004) Presynaptic mechanisms of motor fluctuations in Parkinson’s disease: a probabilistic model. Brain 127(P4):888–899CrossRefGoogle Scholar
  33. 33.
    Carta M, Carlsson T, Kirik D, Bjorklund A (2007) Dopamine release from 5-HT terminals is the cause of l-dopa induced dyskinesias in Parkinsonia rats. Brain 130:1819–1833PubMedCrossRefGoogle Scholar
  34. 34.
    Tanaka H, Kannari K, Maeda T, Tomiyama M, Suda T, Matsunaga M (1999) Role of serotonergic neurons in l-dopa-derived extracellular dopamine in the striatum of 6-OHDA-lesioned rats. Neuroreport 10:631–634PubMedCrossRefGoogle Scholar
  35. 35.
    Politis M, Wu K, Loane C, Piccini P et al (2010) Serotonergic neurones mediate dyskinesias side effects in Parkinson’s patients with neural transplants. Sci Transl Med 2(38):38–46Google Scholar
  36. 36.
    Hakansson K, Lindskog M, Pozzi L et al (2004) DARPP-32 and modulation of cAMP signaling: involvement in motor control and levodopa-induced dyskinesia. Parkinsonism Relat Disord 10:281–286PubMedCrossRefGoogle Scholar
  37. 37.
    Picconi B, Gardoni F, Centonze D et al (2004) Abnormal Ca2-calmodulin-dependent protein kinase II function mediates synaptic and motor deficits in experimental Parkinsonism. J Neurosci 24:5283–5291PubMedCrossRefGoogle Scholar
  38. 38.
    Sheng M, Kim MJ (2002) Postsynaptic signaling and plasticity mechanisms. Science 298:776–780PubMedCrossRefGoogle Scholar
  39. 39.
    Morissette M, Grondin R, Goulet M, Bedard PJ, Di Paolo T (1999) Differential regulation of striatal preproenkephalin and preprotachykinin mRNA levels in MPTP-lesioned monkeys chronically treated with dopamine D1 or D2 receptor agonists. J Neurochem 72:682–692PubMedCrossRefGoogle Scholar
  40. 40.
    Calon F, Birdi S, Rajput AH, Hornykiewicz O, Bedard PJ, Di Paolo T (2002) Increase of preproenkephalin mRNA levels in the putamen of Parkinson disease patients with levodopa-induced dyskinesias. J Neuropathol Exp Neurol 61:186–196PubMedGoogle Scholar
  41. 41.
    Piccini P, Weeks RA, Brooks DJ (1997) Alterations in opioid receptor binding in Parkinson’s disease patients with levodopa-induced dyskinesias. Ann Neurol 42:720–726PubMedCrossRefGoogle Scholar
  42. 42.
    Henry B, Fox SH, Crossman AR, Brotchie JM (2001) Mu- and delta-opioid receptor antagonists reduce levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Exp Neurol 171:139–146PubMedCrossRefGoogle Scholar
  43. 43.
    Calon F, Di Paolo T (2002) Levodopa response complications–GABA receptors and preproenkephalin expression in the human brain. Parkinsonism Relat Disord 8:449–454PubMedCrossRefGoogle Scholar
  44. 44.
    Vinuela A, Hallett PJ, Isacson O et al (2008) Implanted reuptake-deficient or wild-type dopaminergic neurons improve on l-dopa dyskinesias without off-dyskinesias in a rat model of Parkinson’s disease. Brain 131:3361–3379PubMedCrossRefGoogle Scholar
  45. 45.
    Wictorin K, Brundin P, Gustavii B, Lindvall O, Bjorklund A (1990) Reformation of long axon pathways in adult rat central nervous system by human forebrain neuroblasts. Nature 347:556–558PubMedCrossRefGoogle Scholar
  46. 46.
    Isacson O, Deacon T, Pakzaban P, Galpern W, Dinsmore J, Burns L (1995) Transplanted xenogeneic neural cells in neurodegenerative disease models exhibit remarkable axonal target specificity and distinct growth patterns of glial and axonal fibres. Nat Med 1(11):1189–1194PubMedCrossRefGoogle Scholar
  47. 47.
    Isacson O, Deacon T (1996) Specific axon guidance factors persist in the adult brain as demonstrated by pig neuroblasts transplanted to the rat. Neuroscience 75(3):827–837PubMedCrossRefGoogle Scholar
  48. 48.
    Freed CR, Breeze RE, Rosenberg NL et al (1992) Survival of implanted foetal dopaminergic cells and neurologic improvement 12–46 months after transplantation for Parkinson’s disease. NEJM 327(22):1549–1555PubMedCrossRefGoogle Scholar
  49. 49.
    Cooper O (2010) Neuroregeneration Laboratories, Harvard University. Personal communicationGoogle Scholar
  50. 50.
    Isacson O, Bjorklund LM, Schumacher JM (2003) Towards full restoration of synaptic and terminal function of the dopaminergic system in Parkinson’s disease from regeneration and neuronal replacement by stem cell. Ann Neurol 53:135–148CrossRefGoogle Scholar
  51. 51.
    Maxwell SL, Ho HY, Kuehner E, Zhao S, Li M (2005) Pitx-3 regulates tyrosine hydroxylase expression in the substantia nigra and identifies a subgroup of mesencephalic dopaminergic progenitor neurons during mouse development. Dev Biol 282:467–479PubMedCrossRefGoogle Scholar
  52. 52.
    Grealish S, Jonsson M, Li M, Kirik D, Bjorklund A, Thompson L (2009) The A9 dopamine neuron component in grafts of ventral mesencephalon is an important determinant for recovery of motor function in a rat model of Parkinson’s disease. Brain 133:482–495CrossRefGoogle Scholar
  53. 53.
    Kirik D, Winkler C, Bjorklund A (2001) Growth and functional efficacy of intrastriatal nigral transplants depend on the extent of nigrostriatal degeneration. J Neurosci 21:2889–2896PubMedGoogle Scholar
  54. 54.
    Freed CR, Greene PE, Breeze RE, Fahn S et al (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. NEJM 344(10):710–719PubMedCrossRefGoogle Scholar
  55. 55.
    Fawcett JW, Barker RA, Dunnett SB (1995) Dopaminergic neuronal survival and the effects of bFGF in explant, three dimensional and monolayer cultures of embryonic rat ventral mesencephalon. Exp Brain Res 106:275–282PubMedCrossRefGoogle Scholar
  56. 56.
    Braak H, Del Tredici K (2008) Assessing fetal nerve cell grafts in Parkinson’s disease. Nat Med 14:483–485PubMedCrossRefGoogle Scholar
  57. 57.
    Olanow CW, Goetz CG, Kordower JH et al (2003) A double-blind controlled trial of bilateral foetal nigral transplantation in Parkinson’s disease. Ann Neurol 54:403–414PubMedCrossRefGoogle Scholar
  58. 58.
    Piccini P, Pavese N, Hagell P, Reimer J, Björklund A, Oertel WH et al (2005) Factors affecting the clinical outcome after neural transplantation in Parkinson’s disease. Brain 128:2977–2986PubMedCrossRefGoogle Scholar
  59. 59.
    Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14(5):504–506PubMedCrossRefGoogle Scholar
  60. 60.
    Mendez I, Vinuela A, Astradsson A, Mukhida K, Hallett P, Isacson O et al (2008) Dopamine neurons implanted into people with Parkinson’s disease survive without pathology for 14 years. Nat Med 14(5):483–485CrossRefGoogle Scholar
  61. 61.
    Geny C, Naimi-Sadaoui S, Jeny R, Belkadi AM, Juliano SL, Peschanski M (1994) Long-term delayed vascularisation of human neural transplants to the rat brain. J Neuroscience 14:7553–7562Google Scholar
  62. 62.
    Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53(S3):S26–S38PubMedCrossRefGoogle Scholar
  63. 63.
    Cooper O, Astradsson A, Hallett P, Robertson H, Mendez I, Isacson O (2009) Lack of functional relevance of isolated cell damage in transplants of Parkinson’s disease patients. J Neurol 356(S3):S310–S316CrossRefGoogle Scholar
  64. 64.
    Redmond DE Jr, Vinuela A, Kordower JH, Isacson O (2008) Influence of cell preparation and target location on the behavioural recovery after striatal transplantation of foetal dopaminergic neurons in a primate model of Parkinson’s disease. Neurobiol Dis 29:103–116PubMedCrossRefGoogle Scholar
  65. 65.
    Isacson O (2003) The production and use of cells as therapeutic agents in neurodegenerative diseases. Lancet Neurol 2:417–424PubMedCrossRefGoogle Scholar
  66. 66.
    Ma Y, Tang C, Chaly T, Greene P, Breeze R, Fahn S, Freed C, Dhawan V, Eidelberg D (2010) Dopamine cell implantation in Parkinson’s disease: long-term clinical and 18F-Fdopa PET outcomes. J Nucl Med 52:7–15CrossRefGoogle Scholar
  67. 67.
    Mendez I, Sanchez-Pernaute R, Cooper O, Vinuela A, Ferrari D, Bjorklund L, Dagher A, Isacon O (2005) Cell type analysis of functional foetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson’s disease. Brain 128:1498–1510PubMedCrossRefGoogle Scholar
  68. 68.
    Li JY, Englund E, Holton J, Soulet D, Hagell P, Lees A, Lindvall O, Brundin P (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14(5):501–503PubMedCrossRefGoogle Scholar
  69. 69.
    Greenamyer JT, Hastings TG (2004) Parkinson’s–divergent causes, convergent mechanisms. Science 304:1120–1122CrossRefGoogle Scholar
  70. 70.
    Piccini P, Brooks D, Bjorklund A, Lindvall O et al (1999) Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat Neurosci 2(12):1137–1140PubMedCrossRefGoogle Scholar
  71. 71.
    Bostan AC, Strick PL (2010) The cerebellum and basal ganglia are interconnected. Neuropsychol Rev 20:261–270PubMedCrossRefGoogle Scholar
  72. 72.
    Kingsbury AE, Bandopadhyay R, Silvera-Moriyama L, Lees AJ (2010) Brain stem pathology in Parkinson’s disease: an evaluation of the Braak staging model. Mov Disord 25(15):2508–2515PubMedCrossRefGoogle Scholar
  73. 73.
    Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123(pt9):1767–1783PubMedCrossRefGoogle Scholar
  74. 74.
    Francis PT, Parry EK (2007) Cholinergic and other neurotransmitter mechanisms in Parkinson’s disease, Parkinson’s disease dementia and dementia with Lewy bodies. Mov Disord 22(S17):351–357CrossRefGoogle Scholar
  75. 75.
    Natale G, Pasquali L, Ruggieri S, Paparelli A, Fornai F (2008) Parkinson’s disease and the gut: a well known clinical association in need of an effective cure and explanation. Neurogastenterol Motil 20:741–749CrossRefGoogle Scholar
  76. 76.
    Beach TG, Adler CH, Sue LI et al (2010) Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol 119:689–702PubMedCrossRefGoogle Scholar
  77. 77.
    Ferraye MU, Debu B, Fraix V, Pollak P et al (2010) Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain 133(pt1):205–214PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.University of Oxford Medical School, John Radcliffe HospitalOxfordUK
  2. 2.Harvard University Neuroregeneration LaboratoriesMcLean Hospital, MRC130BelmontUSA
  3. 3.Corpus Christi CollegeOxfordUK

Personalised recommendations