Journal of Neurology

, Volume 258, Supplement 2, pp 299–306

Basic science in Parkinson’s disease: its impact on clinical practice

  • Jörg B. Schulz
  • Manfred Gerlach
  • Gabriele Gille
  • Wilfried Kuhn
  • Martina Müngersdorf
  • Peter Riederer
  • Martin Südmeyer
  • Albert Ludolph
Article

Abstract

Failures in clinical studies that were aimed to prove disease-modifying effects of treatments in Parkinson’s disease (PD) raise the question as to whether basic sciences have had an impact in clinical practice. This question implies that despite well-publicized results obtained by intensive genetic and pathogenetic research, e.g. the identification of mutations and cellular biochemical pathways that underlie Parkinson-specific neurodegeneration, no relevant disease-modifying treatment options have been developed. This view neglects the fact that today there are plenty of dopaminergic and non-dopaminergic and surgical treatment options, and that PD was not treatable 50 years ago. This progress was made possible only by basic science. In this review, we underline the success of previous basic science for daily practice in PD and its impact for the understanding and development of an early diagnosis. Early, even pre-symptomatic diagnosis might be key to successfully establish disease-modifying treatments.

Keywords

Parkinson’s disease Basic science History Treatment Genetics 

References

  1. 1.
    Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J (1987) Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol 50:344–346PubMedGoogle Scholar
  2. 2.
    Benazzouz A, Gross C, Feger J, Boraud T, Bioulac B (1993) Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur J Neurosci 5:382–389PubMedCrossRefGoogle Scholar
  3. 3.
    Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249:1436–1438PubMedCrossRefGoogle Scholar
  4. 4.
    Bernheimer H, Birkmayer W, Hornykiewicz O (1962) Behavior of monoamine oxidase in the brain of man after therapy with monoamine oxidase inhibitors. Wien Klin Wochenschr 74:558–559PubMedGoogle Scholar
  5. 5.
    Birkmayer W, Hornykiewicz O (1961) The l-3,4-dioxyphenylalanine (DOPA)-effect in Parkinson-akinesia. Wien Klin Wochenschr 73:787–788PubMedGoogle Scholar
  6. 6.
    Birkmayer W, Riederer P, Youdim MB, Linauer W (1975) The potentiation of the anti akinetic effect after l-dopa treatment by an inhibitor of MAO-B, Deprenil. J Neural Transm 36:303–326PubMedCrossRefGoogle Scholar
  7. 7.
    Bjorklund A, Stenevi U (1979) Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res 177:555–560PubMedCrossRefGoogle Scholar
  8. 8.
    Blaschko H, Richter D, Schlossmann H (1937) The oxidation of adrenaline and other amines. Biochem J 31:2187–2196PubMedGoogle Scholar
  9. 9.
    Bormann J (1989) Memantine is a potent blocker of N-methyl-d-aspartate (NMDA) receptor channels. Eur J Pharmacol 166:591–592PubMedCrossRefGoogle Scholar
  10. 10.
    Braak H, Del Tredici K, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211PubMedCrossRefGoogle Scholar
  11. 11.
    Calne DB, Teychenne PF, Leigh PN, Bamji AN, Greenacre JK (1974) Treatment of parkinsonism with bromocriptine. Lancet 2:1355–1356PubMedCrossRefGoogle Scholar
  12. 12.
    Carlsson A, Lindquist M, Magnusson T (1957) 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 180:1200PubMedCrossRefGoogle Scholar
  13. 13.
    Carlsson A, Lindqvist M, Fila-Hromadko S, Corrodi H (1962) Synthese von Catechol-O-methyl-transferase-hemmenden Verbindungen. In den Catecholaminmetabolismus eingreifende Substanzen. 1, Mitteilung. Helvetica Chimica Acta 45:270–276CrossRefGoogle Scholar
  14. 14.
    Carlsson A, Lindqvist M, Magnusson T, Waldeck B (1958) On the presence of 3-hydroxytyramine in brain. Science 127:471PubMedCrossRefGoogle Scholar
  15. 15.
    Cho MS, Lee YE, Kim JY, Chung S, Cho YH, Kim DS, Kang SM, Lee H, Kim MH, Kim JH, Leem JW, Oh SK, Choi YM, Hwang DY, Chang JW, Kim DW (2008) Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 105:3392–3397PubMedCrossRefGoogle Scholar
  16. 16.
    Chu Y, Kordower JH (2010) Lewy body pathology in fetal grafts. Ann NY Acad Sci 1184:55–67PubMedCrossRefGoogle Scholar
  17. 17.
    Corrodi H, Fuxe K, Hokfelt T, Lidbrink P, Ungerstedt U (1973) Effect of ergot drugs on central catecholamine neurons: evidence for a stimulation of central dopamine neurons. J Pharm Pharmacol 25:409–412PubMedCrossRefGoogle Scholar
  18. 18.
    Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM, Kopin IJ (1979) Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1:249–254PubMedCrossRefGoogle Scholar
  19. 19.
    de Lau LML, Schipper CMA, Hofman A, Koudstaal PJ, Breteler MMB (2005) Prognosis of Parkinson disease: risk of dementia and mortality: the Rotterdam study. Arch Neurol 62:1265–1269PubMedCrossRefGoogle Scholar
  20. 20.
    DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. TINS 13:281–285PubMedGoogle Scholar
  21. 21.
    Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schäfer H, Bötzel K, Daniels C, Deutschländer A, Dillmann U, Eisner W, Gruber D, Hamel W, Herzog J, Hilker R, Klebe S, Kloss M, Koy J, Krause M, Kupsch A, Lorenz D, Lorenzl S, Mehdorn HM, Moringlane JR, Oertel W, Pinsker MO, Reichmann H, Reuss A, Schneider G-H, Schnitzler A, Steude U, Sturm V, Timmermann L, Tronnier V, Trottenberg T, Wojtecki L, Wolf E, Poewe W, Voges J, German Parkinson Study Group NS (2006) A randomized trial of deep-brain stimulation for Parkinson's disease. N Engl J Med 355:896–908PubMedCrossRefGoogle Scholar
  22. 22.
    Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, Itokazu Y, Tajima N, Yamada H, Sawada H, Ishikawa H, Mimura T, Kitada M, Suzuki Y, Ide C (2004) Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 113:1701–1710PubMedGoogle Scholar
  23. 23.
    Dunnett SB, Bjorklund A, Stenevi U, Iversen SD (1981) Behavioural recovery following transplantation of substantia nigra in rats subjected to 6-OHDA lesions of the nigrostriatal pathway. I. Unilateral lesions. Brain Res 215:147–161PubMedCrossRefGoogle Scholar
  24. 24.
    Dunnett SB, Bjorklund A, Stenevi U, Iversen SD (1981) Behavioural recovery following transplantation of substantia nigra in rats subjected to 6-OHDA lesions of the nigrostriatal pathway. II. Bilateral lesions. Brain Res 229:457–470PubMedCrossRefGoogle Scholar
  25. 25.
    Ehringer H, Hornykiewicz O (1960) Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system. Klin Wochenschr 38:1236–1239PubMedCrossRefGoogle Scholar
  26. 26.
    Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfield H, Culver S, Trojanowski JQ, Eidelberg D, Fahn S (2001) Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Engl J Med 344:710–719PubMedCrossRefGoogle Scholar
  27. 27.
    Freed CR, Leehey MA, Zawada M, Bjugstad K, Thompson L, Breeze RE (2003) Do patients with Parkinson's disease benefit from embryonic dopamine cell transplantation? J Neurol 250(Suppl 3):III44–III46PubMedGoogle Scholar
  28. 28.
    Funk C (1911) Synthesis of dl-3:4-dihydroxyphenylalanine. J Chem Soc 99:554–557Google Scholar
  29. 29.
    Gerlach M, Riederer P, Przuntek H, Youdim MB (1991) MPTP mechanisms of neurotoxicity and their implications for Parkinson's disease. Eur J Pharmacol 208:273–286PubMedCrossRefGoogle Scholar
  30. 30.
    Gispert-Sanchez S, Auburger G (2006) The role of protein aggregates in neuronal pathology: guilty, innocent, or just trying to help? J Neural Transm 70:111–117CrossRefGoogle Scholar
  31. 31.
    Hatcher JM, Pennell KD, Miller GW (2008) Parkinson's disease and pesticides: a toxicological perspective. Trends Pharmacol Sci 29:322–329PubMedCrossRefGoogle Scholar
  32. 32.
    Hely MA, Morris JGL, Reid WGJ, Trafficante R (2005) Sydney multicenter study of Parkinson's disease: non-l-dopa-responsive problems dominate at 15 years. Mov Disord 20:190–199PubMedCrossRefGoogle Scholar
  33. 33.
    Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442PubMedGoogle Scholar
  34. 34.
    Holtz P, Credner K (1941) Decarboxylierung von dioxyphenylalanin (Dopa) und Histidin in vivo. Naturwissenschaften 29:649–650CrossRefGoogle Scholar
  35. 35.
    Ilieva H, Polymenidou M, Cleveland DW (2009) Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 187:761–772PubMedCrossRefGoogle Scholar
  36. 36.
    Ishihara LS, Cheesbrough A, Brayne C, Schrag A (2007) Estimated life expectancy of Parkinson's patients compared with the UK population. J Neurol Neurosurg Psychiatry 78:1304–1309PubMedCrossRefGoogle Scholar
  37. 37.
    Johnston JP (1968) Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 17:1285–1297PubMedCrossRefGoogle Scholar
  38. 38.
    Karpinar DP, Balija MBG, Kügler S, Opazo F, Rezaei-Ghaleh N, Wender N, Kim H-Y, Taschenberger G, Falkenburger BH, Heise H, Kumar A, Riedel D, Fichtner L, Voigt A, Braus GH, Giller K, Becker S, Herzig A, Baldus M, Jäckle H, Eimer S, Schulz JB, Griesinger C, Zweckstetter M (2009) Pre-fibrillar alpha-synuclein variants with impaired beta-structure increase neurotoxicity in Parkinson's disease models. EMBO J 28:3256–3268PubMedCrossRefGoogle Scholar
  39. 39.
    Kim DW, Chung S, Hwang M, Ferree A, Tsai HC, Park JJ, Nam TS, Kang UJ, Isacson O, Kim KS (2006) Stromal cell-derived inducing activity, Nurr1, and signaling molecules synergistically induce dopaminergic neurons from mouse embryonic stem cells. Stem cells 24:557–567PubMedCrossRefGoogle Scholar
  40. 40.
    Knoll J (1983) Deprenyl (selegiline): the history of its development and pharmacological action. Acta Neurol Scand 95:57–80CrossRefGoogle Scholar
  41. 41.
    Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease. Nat Med 14:504–506PubMedCrossRefGoogle Scholar
  42. 42.
    Kordower JH, Chu Y, Hauser RA, Olanow CW, Freeman TB (2008) Transplanted dopaminergic neurons develop PD pathologic changes: a second case report. Mov Disord 23:2303–2306PubMedCrossRefGoogle Scholar
  43. 43.
    Kornhuber J, Bormann J, Retz W, Hubers M, Riederer P (1989) Memantine displaces [3H]MK-801 at therapeutic concentrations in postmortem human frontal cortex. Eur J Pharmacol 166:589–590PubMedCrossRefGoogle Scholar
  44. 44.
    Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980PubMedCrossRefGoogle Scholar
  45. 45.
    Li J, Englund E, Holton J, Soulet D, Hagell P, Lees A, Lashley T, Quinn N, Rehncrona S, Björklund A, Widner H, Revesz T, Lindvall O, Brundin P (2008) Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nat Med 14:501–503PubMedCrossRefGoogle Scholar
  46. 46.
    Li JY, Englund E, Widner H, Rehncrona S, Bjorklund A, Lindvall O, Brundin P (2010) Characterization of Lewy body pathology in 12- and 16-year-old intrastriatal mesencephalic grafts surviving in a patient with Parkinson's disease. Mov Disord 25:1091–1096PubMedCrossRefGoogle Scholar
  47. 47.
    Limousin P, Pollak P, Benazzouz A, Hoffmann D, Le Bas JF, Broussolle E, Perret JE, Benabid AL (1995) Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345:91–95PubMedCrossRefGoogle Scholar
  48. 48.
    Lindvall O, Brundin P, Widner H, Rehncrona S, Gustavii B, Frackowiak R, Leenders KL, Sawle G, Rothwell JC, Marsden CD et al (1990) Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease. Science 247:574–577PubMedCrossRefGoogle Scholar
  49. 49.
    Marras C, Lang A (2008) Changing concepts in Parkinson disease: moving beyond the decade of the brain. Neurology 70:1996–2003PubMedCrossRefGoogle Scholar
  50. 50.
    Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, Shannon KM, Nauert GM, Perl DP, Godbold J, Freeman TB (2003) A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Ann Neurol 54:403–414PubMedCrossRefGoogle Scholar
  51. 51.
    Olanow CW, Gracies JM, Goetz CG, Stoessl AJ, Freeman T, Kordower JH, Godbold J, Obeso JA (2009) Clinical pattern and risk factors for dyskinesias following fetal nigral transplantation in Parkinson's disease: a double blind video-based analysis. Mov Disord 24:336–343PubMedCrossRefGoogle Scholar
  52. 52.
    Ordenstein L (1867) Sur la paralysie agitante et la sclérose en plaque generalisée. Martinet, ParisGoogle Scholar
  53. 53.
    Parkinson J (1817) An essay on the shaking palsy. Sherwood, Neely, and Jones, LondonGoogle Scholar
  54. 54.
    Perlow MJ, Freed WJ, Hoffer BJ, Seiger A, Olson L, Wyatt RJ (1979) Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science 204:643–647PubMedCrossRefGoogle Scholar
  55. 55.
    Perrier AL, Tabar V, Barberi T, Rubio ME, Bruses J, Topf N, Harrison NL, Studer L (2004) Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 101:12543–12548PubMedCrossRefGoogle Scholar
  56. 56.
    Peschanski M, Defer G, N’Guyen JP, Ricolfi F, Monfort JC, Remy P, Geny C, Samson Y, Hantraye P, Jeny R et al (1994) Bilateral motor improvement and alteration of L-dopa effect in two patients with Parkinson's disease following intrastriatal transplantation of foetal ventral mesencephalon. Brain 117(Pt 3):487–499PubMedCrossRefGoogle Scholar
  57. 57.
    Roy NS, Cleren C, Singh SK, Yang L, Beal MF, Goldman SA (2006) Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med 12:1259–1268PubMedCrossRefGoogle Scholar
  58. 58.
    Sano H (2000) Biochemistry of the extrapyramidal system Shinkei Kennkyu No Shinpo, Adv Neurol Sci (ISSN: 0001-8724) 1960, 5:42–48; Parkinsonism Relat Disord 6:3–6Google Scholar
  59. 59.
    Schulz J (2008) Update on the pathogenesis of Parkinson's disease. J Neurol 255(S5):3–7PubMedCrossRefGoogle Scholar
  60. 60.
    Schulz J, Beal M (1994) Mitochondrial dysfunction in movement disorders. Curr Opin Neurol 7:333–339PubMedCrossRefGoogle Scholar
  61. 61.
    Schulz TC, Noggle SA, Palmarini GM, Weiler DA, Lyons IG, Pensa KA, Meedeniya AC, Davidson BP, Lambert NA, Condie BG (2004) Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture. Stem cells 22:1218–1238PubMedCrossRefGoogle Scholar
  62. 62.
    Schwab RS, Amador LV, Lettvin JY (1951) Apomorphine in Parkinson's disease. Trans Am Neurol Assoc 56:251–253PubMedGoogle Scholar
  63. 63.
    Schwab RS, England AC Jr, Poskanzer DC, Young RR (1969) Amantadine in the treatment of Parkinson's disease. JAMA 208:1168–1170PubMedCrossRefGoogle Scholar
  64. 64.
    Simón-Sánchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D, Paisan-Ruiz C, Lichtner P, Scholz SW, Hernandez DG, Krüger R, Federoff M, Klein C, Goate A, Perlmutter J, Bonin M, Nalls MA, Illig T, Gieger C, Houlden H, Steffens M, Okun MS, Racette BA, Cookson MR, Foote KD, Fernandez HH, Traynor BJ, Schreiber S, Arepalli S, Zonozi R, Gwinn K, van der Brug M, Lopez G, Chanock SJ, Schatzkin A, Park Y, Hollenbeck A, Gao J, Huang X, Wood NW, Lorenz D, Deuschl G, Chen H, Riess O, Hardy JA, Singleton AB, Gasser T (2009) Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat Genet 41:1308–1312PubMedCrossRefGoogle Scholar
  65. 65.
    Takagi Y, Takahashi J, Saiki H, Morizane A, Hayashi T, Kishi Y, Fukuda H, Okamoto Y, Koyanagi M, Ideguchi M, Hayashi H, Imazato T, Kawasaki H, Suemori H, Omachi S, Iida H, Itoh N, Nakatsuji N, Sasai Y, Hashimoto N (2005) Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J Clin Invest 115:102–109PubMedGoogle Scholar
  66. 66.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872PubMedCrossRefGoogle Scholar
  67. 67.
    Trzaska KA, King CC, Li KY, Kuzhikandathil EV, Nowycky MC, Ye JH, Rameshwar P (2009) Brain-derived neurotrophic factor facilitates maturation of mesenchymal stem cell-derived dopamine progenitors to functional neurons. J Neurochem 110:1058–1069PubMedCrossRefGoogle Scholar
  68. 68.
    Wenning GK, Odin P, Morrish P, Rehncrona S, Widner H, Brundin P, Rothwell JC, Brown R, Gustavii B, Hagell P, Jahanshahi M, Sawle G, Bjorklund A, Brooks DJ, Marsden CD, Quinn NP, Lindvall O (1997) Short- and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson's disease. Ann Neurol 42:95–107PubMedCrossRefGoogle Scholar
  69. 69.
    Wernig M, Zhao J-P, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc Natl Acad Sci USA 105:5856–5861PubMedCrossRefGoogle Scholar
  70. 70.
    Wijeyekoon R, Barker RA (2009) Cell replacement therapy for Parkinson's disease. Biochim Biophys Acta 1792:688–702PubMedGoogle Scholar
  71. 71.
    Yang D, Zhang ZJ, Oldenburg M, Ayala M, Zhang SC (2008) Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem cells 26:55–63PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jörg B. Schulz
    • 1
    • 2
  • Manfred Gerlach
    • 3
  • Gabriele Gille
    • 4
  • Wilfried Kuhn
    • 5
  • Martina Müngersdorf
    • 6
  • Peter Riederer
    • 7
  • Martin Südmeyer
    • 8
  • Albert Ludolph
    • 9
  1. 1.Department of Neurology, University HospitalRWTH Aachen UniversityAachenGermany
  2. 2.JARA BrainAachenGermany
  3. 3.Department for Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyUniversity of WürzburgWürzburgGermany
  4. 4.Department of NeurologyTU DresdenDresdenGermany
  5. 5.Department of NeurologyLeopoldina-KrankenhausSchweinfurtGermany
  6. 6.Neurologie am Hackeschen MarktBerlinGermany
  7. 7.Clinic and Policlinic of Psychiatry, Psychosomatics and PsychotherapyUniversity of WürzburgWürzburgGermany
  8. 8.Department of NeurologyUniversity of DüsseldorfDüsseldorfGermany
  9. 9.Department of NeurolgyUniversity of UlmUlmGermany

Personalised recommendations