Journal of Neurology

, Volume 258, Issue 11, pp 1949–1957 | Cite as

White matter involvement in idiopathic normal pressure hydrocephalus: a voxel-based diffusion tensor imaging study

  • Shigenori Kanno
  • Nobuhito Abe
  • Makoto Saito
  • Masahito Takagi
  • Yoshiyuki Nishio
  • Akiko Hayashi
  • Makoto Uchiyama
  • Risa Hanaki
  • Hirokazu Kikuchi
  • Kotaro Hiraoka
  • Hiroshi Yamasaki
  • Osamu Iizuka
  • Atsushi Takeda
  • Yasuto Itoyama
  • Shoki Takahashi
  • Etsuro Mori
Original Communication


The aim of this study was to characterise the white matter damage involved in idiopathic normal pressure hydrocephalus (INPH) using diffusion tensor imaging (DTI) and the relationship between this damage and clinical presentation. Twenty patients with INPH, 20 patients with Alzheimer’s disease and 20 patients with idiopathic Parkinson’s disease (as disease control groups) were enrolled in this study. Mean diffusivity (MD) and fractional anisotropy (FA) were determined using DTI, and these measures were analysed to compare the INPH group with the control groups and with certain clinical correlates. On average, the supratentorial white matter presented higher MD and lower FA in the INPH group than in the control groups. In the INPH group, the mean hemispheric FA correlated with some of the clinical measures, whereas the mean hemispheric MD did not. On a voxel-based statistical map, white matter involvement with high MD was localised to the periventricular regions, and white matter involvement with low FA was localised to the corpus callosum and the subcortical regions. The total scores on the Frontal Assessment Battery were correlated with the FA in the frontal and parietal subcortical white matter, and an index of gait disturbance was correlated with the FA in the anterior limb of the left internal capsule and under the left supplementary motor area. DTI revealed the presence of white matter involvement in INPH. Whereas white matter regions with high MD were not related to symptom manifestation, those with low FA were related to motor and cognitive dysfunction in INPH.


Idiopathic normal pressure hydrocephalus Diffusion tensor imaging White matter Alzheimer’s disease Parkinson’s disease 



We thank the patients and their families for their participation in this study. We also thank Takeo Kondo and Kazutomo Nishijima for their constant support. This study was supported by a Grant-in-Aid for Scientific Research on Priority Areas—System study on higher-order brain functions from the MECSST Japan (20020004) and by the Ministry of Health, Labor and Welfare of Japan.

Conflict of interest


Supplementary material

415_2011_6038_MOESM1_ESM.doc (34 kb)
Supplementary material 1 (DOC 34 kb)
415_2011_6038_MOESM2_ESM.doc (31 kb)
Supplementary material 2 (DOC 31 kb)


  1. 1.
    Adams RD, Fisher CM, Hakim S, Ojemann RG, Sweet WH (1965) Symptomatic occult hydrocephalus with “normal” cerebrospinal-fluid pressure.a treatable syndrome. N Engl J Med 273:117–126PubMedCrossRefGoogle Scholar
  2. 2.
    Hakim S, Adams RD (1965) The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J Neurol Sci 2:307–327PubMedCrossRefGoogle Scholar
  3. 3.
    Dandy WE (1919) Experimental hydrocephalus. Ann Surg 70:129–142PubMedCrossRefGoogle Scholar
  4. 4.
    Greitz D (2007) Paradigm shift in hydrocephalus research in legacy of Dandy’s pioneering work: rationale for third ventriculostomy in communicating hydrocephalus. Childs Nerv Syst 23:487–489PubMedCrossRefGoogle Scholar
  5. 5.
    Akai K, Uchigasaki S, Tanaka U, Komatsu A (1987) Normal pressure hydrocephalus. Neuropathological study. Acta Pathol Jpn 37:97–110PubMedGoogle Scholar
  6. 6.
    Del Bigio MR (1993) Neuropathological changes caused by hydrocephalus. Acta Neuropathol 85:573–585PubMedCrossRefGoogle Scholar
  7. 7.
    Di Rocco C, Di Trapani G, Maira G, Bentivoglio M, Macchi G, Rossi GF (1977) Anatomo-clinical correlations in normotensive hydrocephalus. Reports on three cases. J Neurol Sci 33:437–452PubMedCrossRefGoogle Scholar
  8. 8.
    Del Bigio MR, Wilson MJ, Enno T (2003) Chronic hydrocephalus in rats and humans: white matter loss and behavior changes. Ann Neurol 53:337–346PubMedCrossRefGoogle Scholar
  9. 9.
    Basser PJ, Pierpaoli C (1998) A simplified method to measure the diffusion tensor from seven MR images. Magn Reson Med 39:928–934PubMedCrossRefGoogle Scholar
  10. 10.
    Le Bihan D, Turner R, Douek P, Patronas N (1992) Diffusion MR imaging: clinical applications. AJR Am J Roentgenol 159:591–599PubMedGoogle Scholar
  11. 11.
    Chabriat H, Pappata S, Poupon C et al (1999) Clinical severity in CADASIL related to ultrastructural damage in white matter: in vivo study with diffusion tensor MRI. Stroke 30:2637–2643PubMedCrossRefGoogle Scholar
  12. 12.
    Hanstock CC, Faden AI, Bendall MR, Vink R (1994) Diffusion-weighted imaging differentiates ischemic tissue from traumatized tissue. Stroke 25:843–848PubMedCrossRefGoogle Scholar
  13. 13.
    van Gelderen P, de Vleeschouwer MH, DesPres D, Pekar J, van Zijl PC, Moonen CT (1994) Water diffusion and acute stroke. Magn Reson Med 31:154–163PubMedCrossRefGoogle Scholar
  14. 14.
    Assaf Y, Ben-Sira L, Constantini S, Chang LC, Beni-Adani L (2006) Diffusion tensor imaging in hydrocephalus: initial experience. AJNR Am J Neuroradiol 27:1717–1724PubMedGoogle Scholar
  15. 15.
    Jinkins JR (1991) Clinical manifestations of hydrocephalus caused by impingement of the corpus callosum on the falx: an MR study in 40 patients. AJNR Am J Neuroradiol 12:331–340PubMedGoogle Scholar
  16. 16.
    Hattingen E, Jurcoane A, Melber J, Blasel S, Zanella FE, Neumann-Haefelin T, Singer OC (2010) Diffusion tensor imaging in patients with adult chronic idiopathic hydrocephalus. Neurosurgery 66:917–924PubMedCrossRefGoogle Scholar
  17. 17.
    Stolze H, Kuhtz-Buschbeck JP, Drücke H, Jöhnk K, Diercks C, Palmié S, Mehdorn HM, Illert M, Deuschl G (2000) Gait analysis in idiopathic normal pressure hydrocephalus—which parameters respond to CSF tap test? Clin Neurophysiol 111:1678–1686PubMedCrossRefGoogle Scholar
  18. 18.
    Rusinek H, de Leon MJ, George AE et al (1991) Alzheimer disease: measuring loss of cerebral gray matter with MR imaging. Radiology 178:109–114PubMedGoogle Scholar
  19. 19.
    Summerfield C, Junque C, Tolosa E et al (2005) Structural brain changes in Parkinson disease with dementia: a voxel-based morphometry study. Arch Neurol 62:281–285PubMedCrossRefGoogle Scholar
  20. 20.
    Ishikawa M, Hashimoto M, Kuwana N et al (2008) Guidelines for management of idiopathic normal pressure hydrocephalus. Neurol Med Chir 48(Suppl):S1–S23CrossRefGoogle Scholar
  21. 21.
    Kubo Y, Kazui H, Yoshida T et al (2008) Validation of grading scale for evaluating symptoms of idiopathic normal-pressure hydrocephalus. Dement Geriatr Cogn Disord 25:37–45PubMedCrossRefGoogle Scholar
  22. 22.
    Podsiadlo D, Richardson S (1991) The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 39:142–148PubMedGoogle Scholar
  23. 23.
    Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198PubMedCrossRefGoogle Scholar
  24. 24.
    Dubois B, Slachevsky A, Litvan I, Pillon B (2000) The FAB: a frontal assessment battery at bedside. Neurology 55:1621–1626PubMedGoogle Scholar
  25. 25.
    Miyoshi N, Kazui H, Ogino A et al (2005) Association between cognitive impairment and gait disturbance in patients with idiopathic normal pressure hydrocephalus. Dement Geriatr Cogn Disord 20(2–3):71–76PubMedCrossRefGoogle Scholar
  26. 26.
    Pfaendner NH, Reuner G, Pietz J et al (2005) MR imaging-based volumetry in patients with early-treated phenylketonuria. AJNR Am J Neuroradiol 26:1681–1685PubMedGoogle Scholar
  27. 27.
    Smith SM, Jenkinson M, Woolrich MW et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23(Suppl 1):S208–S219PubMedCrossRefGoogle Scholar
  28. 28.
    Rorden C, Karnath HO, Bonilha L (2007) Improving lesion-symptom mapping. J Cogn Neurosci 19:1081–1088PubMedCrossRefGoogle Scholar
  29. 29.
    Kennedy KM, Raz N (2009) Aging white matter and cognition: differential effects of regional variations in diffusion properties on memory, executive functions, and speed. Neuropsychologia 47:916–927PubMedCrossRefGoogle Scholar
  30. 30.
    Szeszko PR, Vogel J, Ashtari M et al (2003) Sex differences in frontal lobe white matter microstructure: a DTI study. Neuroreport 14:2469–2473PubMedCrossRefGoogle Scholar
  31. 31.
    Fellgiebel A, Wille P, Muller MJ et al (2004) Ultrastructural hippocampal and white matter alterations in mild cognitive impairment: a diffusion tensor imaging study. Dement Geriatr Cogn Disord 18:101–108PubMedCrossRefGoogle Scholar
  32. 32.
    Medina D, DeToledo-Morrell L, Urresta F et al (2006) White matter changes in mild cognitive impairment and AD: a diffusion tensor imaging study. Neurobiol Aging 27:663–672PubMedCrossRefGoogle Scholar
  33. 33.
    Karagulle Kendi AT, Lehericy S, Luciana M, Ugurbil K, Tuite P (2008) Altered diffusion in the frontal lobe in Parkinson disease. AJNR Am J Neuroradiol 29:501–505PubMedCrossRefGoogle Scholar
  34. 34.
    Aygok G, Marmarou A, Fatouros P, Young H (2006) Brain tissue water content in patients with idiopathic normal pressure hydrocephalus. Acta Neurochir Suppl 96:348–351PubMedCrossRefGoogle Scholar
  35. 35.
    Kitagaki H, Mori E, Ishii K, Yamaji J, Hirono N, Imamura T (1998) CSF spaces in idiopathic normal pressure hydrocephalus; morphology and volumetry. AJNR Am J Neuroradiol 19:1277–1284PubMedGoogle Scholar
  36. 36.
    Hashimoto M, Ishikawa M, Mori E, Kuwana N (2010) The study of INPH on neurological improvement (SINPHONI). Diagnosis of idiopathic normal pressure hydrocephalus is supported by MRI-based scheme: a prospective cohort study. Cerebrospinal Fluid Res 7:18PubMedCrossRefGoogle Scholar
  37. 37.
    Ishii K, Kawaguchi T, Shimada K et al (2008) Voxel-based analysis of gray matter and CSF space in idiopathic normal pressure hydrocephalus. Demen Geriatr Cogn Disord 25:329–335CrossRefGoogle Scholar
  38. 38.
    Fukuyama H, Ouchi Y, Matsuzaki S et al (1997) Brain functional activity during gait in normal subjects: a SPECT study. Neurosci Lett 228:183–186PubMedCrossRefGoogle Scholar
  39. 39.
    lla Sala S, Francescani A, Spinnler H (2002) Gait apraxia after bilateral supplementary motor area lesion. J Neurol Neurosurg Psychiatry 72:77–85CrossRefGoogle Scholar
  40. 40.
    Nadeau SE (2007) Gait apraxia: further clues to localization. Eur Neurol 58:142–145PubMedCrossRefGoogle Scholar
  41. 41.
    Lenfeldt N, Larsson A, Nyberg L et al (2008) Idiopathic normal pressure hydrocephalus: increased supplementary motor activity accounts for improvement after CSF drainage. Brain 131:2904–2912PubMedCrossRefGoogle Scholar
  42. 42.
    Babiloni C, Carducci F, Del Gratta C et al (2003) Hemispheric asymmetry in human SMA during voluntary simple unilateral movements. An fMRI study. Cortex 39:293–305PubMedCrossRefGoogle Scholar
  43. 43.
    Jäncke L, Peters M, Himmelbach M, Nösselt T, Shah J, Steinmetz H (2000) fMRI study of bimanual coordination. Neuropsychologia 38:164–174PubMedCrossRefGoogle Scholar
  44. 44.
    Goel V, Grafman J, Tajik J, Gana S, Danto D (1997) A study of the performance of patients with frontal lobe lesions in a financial planning task. Brain 120(Pt 10):1805–1822PubMedCrossRefGoogle Scholar
  45. 45.
    Wager TD, Smith EE (2003) Neuroimaging studies of working memory: a meta-analysis. Cogn Affect Behav Neurosci 3:255–274PubMedCrossRefGoogle Scholar
  46. 46.
    Akiguchi I, Ishii M, Watanabe Y et al (2008) Shunt-responsive parkinsonism and reversible white matter lesions in patients with idiopathic NPH. J Neurol 255:1392–1399PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Shigenori Kanno
    • 1
  • Nobuhito Abe
    • 1
  • Makoto Saito
    • 1
  • Masahito Takagi
    • 1
  • Yoshiyuki Nishio
    • 1
  • Akiko Hayashi
    • 1
  • Makoto Uchiyama
    • 1
  • Risa Hanaki
    • 1
  • Hirokazu Kikuchi
    • 1
  • Kotaro Hiraoka
    • 1
  • Hiroshi Yamasaki
    • 1
  • Osamu Iizuka
    • 1
  • Atsushi Takeda
    • 2
  • Yasuto Itoyama
    • 2
  • Shoki Takahashi
    • 3
  • Etsuro Mori
    • 1
  1. 1.Department of Behavioral Neurology and Cognitive NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
  2. 2.Department of NeurologyTohoku University Graduate School of MedicineSendaiJapan
  3. 3.Department of Diagnostic RadiologyTohoku University Graduate School of MedicineSendaiJapan

Personalised recommendations