Journal of Neurology

, Volume 258, Supplement 2, pp 316–322 | Cite as

Continuous dopaminergic stimulation and novel formulations of dopamine agonists

Article

Abstract

There is now accumulating evidence that the combination of progressive pathology of Parkinson’s disease, the change in drug pharmacodynamics, and the pulsatile manner in which short-acting dopaminergic agents stimulate striatal dopamine receptors are the key contributing factors to the priming of the basal ganglia for induction of motor complications. Long-acting drugs provide a more physiological dopaminergic stimulation. Dopamine agonists have been extensively used as monotherapy and add-on therapy to levodopa to treat Parkinson’s disease in the early stage and with motor complications. Today, the new long-acting formulation offers the advantages of an easy use and a more continuous delivery of drug. In this paper the role of new formulations of dopamine agonists in the treatment of parkinsonian patients at different stages of the disease is reviewed.

Keywords

Parkinson’s disease Motor complications Dyskinesia Dopamine agonist Continuous dopaminergic stimulation 

References

  1. 1.
    Olanow CW, Watts RL, Koller WC (2001) An algorithm (decision tree) for the management of Parkinson’s disease: treatment guidelines. Neurology 56(Suppl 5):S1–S86PubMedGoogle Scholar
  2. 2.
    Agid Y, Olanow C, Mizuno Y (2002) Levodopa: why the controversy? Lancet 360:575PubMedCrossRefGoogle Scholar
  3. 3.
    Miyasaki JM, Martin W, Suchowersky O, Weiner WJ, Lang AE (2002) Practice parameter: initiation of treatment for Parkinson’s disease: an evidence-based review. Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 58:11–17Google Scholar
  4. 4.
    Rascol O, Goetz C, Koller W, Poewe W, Sampaio C (2002) Treatment interventions for Parkinson’s disease: an evidence-based assessment. Lancet 359:1589–1598PubMedCrossRefGoogle Scholar
  5. 5.
    Korczyn AD, Nussbaum M (2002) Emerging therapies in the pharmacological treatment of Parkinson’s disease. Drugs 62:775–786PubMedCrossRefGoogle Scholar
  6. 6.
    Marsden CD, Parkes JD (1977) Success and problems of long-term levodopa therapy in Parkinson’s disease. Lancet 1:345–349PubMedCrossRefGoogle Scholar
  7. 7.
    Marsden CD (1994) Parkinson’s disease. J Neurol Neurosurg Psychiatry 57:672–681PubMedCrossRefGoogle Scholar
  8. 8.
    Luquin MR, Scipioni O, Vaamonde J, Gershanik O, Obeso JA (1992) Levodopa-induced dyskinesias in Parkinson’s disease: clinical and pharmacological classification. Mov Disord 7:117–124PubMedCrossRefGoogle Scholar
  9. 9.
    Marconi R, Lefebvre-Caparros D, Bonnet AM, Vidailhet M, Dubois B, Agid Y (1994) Levodopa-induced dyskinesias in Parkinson’s disease: phenomenology and pathophysiology. Mov Disord 9:2–12PubMedCrossRefGoogle Scholar
  10. 10.
    Stocchi F (2009) The hypothesis of the genesis of motor complications and continuous dopaminergic stimulation in the treatment of Parkinson’s disease. Parkinsonism Relat Disord 15(Suppl 1):S9–S15 (Review)Google Scholar
  11. 11.
    Stacy M, Bowron A, Guttman M, Hauser R, Hughes K, Larsen JP et al (2005) Identification of motor and non motor wearing-off in Parkinson’s disease: Comparison of a patient questionnaire versus a clinician assessment. Mov Disord 20:726–733PubMedCrossRefGoogle Scholar
  12. 12.
    Olanow CW, Obeso JA, Stocchi F (2006) Continuous dopamine-receptor treatment of Parkinson’s disease: scientific rationale and clinical implications. Lancet Neurol 5:677–687PubMedCrossRefGoogle Scholar
  13. 13.
    Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24PubMedCrossRefGoogle Scholar
  14. 14.
    Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27PubMedGoogle Scholar
  15. 15.
    Abercrombie ED, Bonatz AE, Zigmond MJ (1990) Effects of l-DOPA on extracellular dopamine in striatum of normal and 6-hydroxydopamine-treated rats. Brain Res 525:36–44PubMedCrossRefGoogle Scholar
  16. 16.
    Venton BJ, Zhang H, Garris PA, Phillips PE, Sulzer D, Wightman RM (2004) Real-time decoding of dopamine concentrating changes in the caudate-putamen during tonic and phasic firing. J Neurochem 89:1284–1295CrossRefGoogle Scholar
  17. 17.
    Calabresi P (1993) Electrophysiology of dopamine–denervated striatal neurons; implications for Parkinson’s disease. Brain 116:433–452PubMedCrossRefGoogle Scholar
  18. 18.
    Centonze D, Gubellini P, Picconi B, Calabresi P, Giacomini P, Bernardi G (1999) Unilateral dopamine denervation blocks corticostriatal LTP. J Neurophysiol 82:3575–3579PubMedGoogle Scholar
  19. 19.
    Picconi B, Centonze D, Hakansson K, Bernardi G, Greengard P, Fisone G et al (2003) Loss of bidirectional striatal synaptic plasticity in l-DOPA-induced dyskinesia. Nat Neurosci 6:501–506PubMedGoogle Scholar
  20. 20.
    Rodriguez M, Gonzalez J, Sabate M, Obeso J, Pereda E (2003) Firing regulation in dopaminergic cells: effect of the partial degeneration of nigrostriatal system in surviving neurons. Eur J Neurosci 18:53–60PubMedCrossRefGoogle Scholar
  21. 21.
    Stephens B, Mueller AJ, Shering AF, Hood SH, Taggart P, Arbuthnott GW et al (2005) Evidence of a breakdown of corticostriatal connections in Parkinson’s disease. Neuroscience 132:741–754PubMedCrossRefGoogle Scholar
  22. 22.
    Zaja-Milatovic S, Milatovic D, Schantz AM, Zhang J, Montine KS, Samii A et al (2005) Dendritic degeneration in neostriatal medium spiny neurons in Parkinson disease. Neurology 64:545–547PubMedGoogle Scholar
  23. 23.
    Tremblay L, Filion M, Bedard PJ (1989) Responses of pallidal neurons to striatal stimulation in monkeys with MPTP-induced Parkinsonism. Brain Res 498:17–33PubMedCrossRefGoogle Scholar
  24. 24.
    Filion M, Tremblay L, Bedard PJ (1988) Abnormal influences of passive limb movement on the activity of globus pallidus neurons in parkinsonian monkeys. Brain Res 444:165–176PubMedCrossRefGoogle Scholar
  25. 25.
    De la Fuente-Fernandez R, Sossi V, Huang Z, Furtado S, Lu JQ, Calne DB et al (2004) Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson’s disease: implications for dyskinesias. Brain 127:2747–2754CrossRefGoogle Scholar
  26. 26.
    Ballard PA, Tetrud JW, Langston JW (1985) Permanent human Parkinsonism due to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP): seven cases. Neurology 35:949–956PubMedGoogle Scholar
  27. 27.
    Bédard PJ, Di Paolo T, Falardeau P, Boucher R (1986) Chronic treatment with l-dopa, but not bromocriptine induces dyskinesia in MPTP-parkinsonian monkeys. Correlation with [3H]spiperone binding. Brain Res 379:294–299PubMedCrossRefGoogle Scholar
  28. 28.
    Pearce RK, Banerji T, Jenner P, Marsden CD (1998) De novo administration of ropinirole and bromocriptine induces less dyskinesia than l-dopa in the MPTP-treated marmoset. Mov Disord 13:234–241PubMedCrossRefGoogle Scholar
  29. 29.
    Jenner P (2000) Factors influencing the onset and persistence of dyskinesia in MPTP-treated primates. Ann Neurol 47:S90–S99PubMedGoogle Scholar
  30. 30.
    Blanchet PJ, Calon F, Martel JC, Bédard PJ, Di Paolo T, Walters RR et al (1995) Continuous administration decreases and pulsatile administration increases behavioral sensitivity to a novel dopamine D2 agonist (U-91356A) in MPTP-exposed monkeys. J Pharmacol Exp Ther 272:854–859PubMedGoogle Scholar
  31. 31.
    Bibbiani F, Costantini LC, Patel R, Chase TN (2005) Continuous dopaminergic stimulation reduces risk of motor complications in parkinsonian primates. Exp Neurol 192:73–78PubMedCrossRefGoogle Scholar
  32. 32.
    Morissette M, Goulet M, Soghomonian JJ, Blanchet PJ, Calon F, Bédard PJ et al (1997) Preproenkephalin mRNA expression in the caudate-putamen of MPTP monkeys after chronic treatment with the D2 agonist U91356A in continuous or intermittent mode of administration: comparison with l-DOPA therapy. Brain Res Mol Brain Res 49:55–62PubMedCrossRefGoogle Scholar
  33. 33.
    Aubert I, Guigoni C, Hakansson K, Li Q, Dovero S, Barthe N et al (2005) Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Ann Neurol 57:17–26PubMedCrossRefGoogle Scholar
  34. 34.
    Calon F, Grondin R, Morissette M, Goulet M, Blanchet PJ, Di Paolo T et al (2000) Molecular basis of levodopa-induced dyskinesias. Ann Neurol 47:70–78Google Scholar
  35. 35.
    Cenci MA, Tranberg A, Andersson M, Hilbertson A (1999) Changes in the regional and compartmental distribution of FosB- and JunB-like immunoreactivity induced in the dopamine-denervated rat striatum by acute or chronic l-dopa treatment. Neuroscience 94:515–527PubMedCrossRefGoogle Scholar
  36. 36.
    Calon F, Birdi S, Rajput AH, Hornykiewicz O, Bedard PJ, Di Paolo T (2002) Increase of preproenkephalin mRNA levels in the putamen of Parkinson disease patients with levodopa-induced dyskinesias. J Neuropathol Exp Neurol 61:186–196PubMedGoogle Scholar
  37. 37.
    Boraud T, Bezard E, Bioulac B, Gross CE (2001) Dopamine agonist-induced dyskinesias are correlated to both firing pattern and frequency alterations of pallidal neurones in the MPTP-treated monkey. Brain 124:546–557PubMedCrossRefGoogle Scholar
  38. 38.
    Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Di Lazzaro V (2001) Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci 21:1033–1038PubMedGoogle Scholar
  39. 39.
    Juncos JL, Engber TM, Raisman R, Susel Z, Thibaut F, Ploska A et al (1989) Continuous and intermittent levodopa differentially affect basal ganglia function. Ann Neurol 25:473–478PubMedCrossRefGoogle Scholar
  40. 40.
    Engber TM, Susel Z, Juncos JL, Chase TN (1989) Continuous and intermittent levodopa differentially affect rotation induced by D-1 and D-2 dopamine agonists. Eur J Pharmacol 168:291–298PubMedCrossRefGoogle Scholar
  41. 41.
    Engber TM, Susel Z, Kuo S, Gerfen CR, Chase TN (1991) Levodopa replacement therapy alters enzyme activities in striatum and neuropeptide content in striatal output regions of 6-hydroxydopamine lesioned rats. Brain Res 552:113–118PubMedCrossRefGoogle Scholar
  42. 42.
    Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE (2000) A 5 year study of the incidence of dyskinesia in patients with early parkinson’s disease who were treated with ropinirole or levodopa. N Engl J Med 342:1484–1491PubMedCrossRefGoogle Scholar
  43. 43.
    Parkinson Study Group (2000) Pramipexole versus levodopa as initial treatment for Parkinson disease. JAMA 284:231–238CrossRefGoogle Scholar
  44. 44.
    Whone AL, Watts RL, Stoessl AJ, Davis M, Reske S, Nahmias C et al (2003) Slower progression of Parkinson’s disease with ropinirole versus levodopa: The REAL-PET study. Ann Neurol 54:93–101PubMedCrossRefGoogle Scholar
  45. 45.
    Parkinson Study Group (2002) Dopamine transporter brain imaging to assess the effects of pramipexole versus levodopa on Parkinson disease progression. JAMA 287:1653–1661CrossRefGoogle Scholar
  46. 46.
    Nutt JG, Obeso JA, Stocchi F (2000) Continuous dopamine receptor stimulation in advanced Parkinson’s disease. Trends Neurosci 23:109–115CrossRefGoogle Scholar
  47. 47.
    Stocchi F, Ruggieri S, Vacca L, Olanow CW (2002) Prospective randomized trial of lisuride infusion versus oral levodopa in PD patients. Brain 125:2058–2066PubMedCrossRefGoogle Scholar
  48. 48.
    Olanow CW, Fahn S, Muenter M et al (1994) A multi-center, double-blind, placebo-controlled trial of pergolide as an adjunct to Sinemet in Parkinson’s disease. Mov Disord 9:40–47PubMedCrossRefGoogle Scholar
  49. 49.
    Lieberman A, Olanow CW, Sethi K et al (1998) A multi-center double blind placebo-controlled trial of ropinirole as an adjunct to l-dopa in the treatment of Parkinson’s disease patients with motor fluctuations. Neurology 51:1057–1062PubMedGoogle Scholar
  50. 50.
    Pinter MM, Pogarell O, Oertel WH (1999) Efficacy, safety, and tolerance of the non-ergoline dopamine agonist pramipexole in the treatment of advanced Parkinson’s disease: a double blind, placebo controlled, randomised, multicentre study. J Neurol Neurosurg Psychiatry 66:436–441PubMedCrossRefGoogle Scholar
  51. 51.
    Clarke CE, Deane KH (2001) Cabergoline for levodopa-induced complications in Parkinson’s disease. Cochrane Database Syst Rev 1:CD001518PubMedGoogle Scholar
  52. 52.
    Talati R, Baker WL, Patel AA, Reinhart K, Coleman CI (2009) Adding a dopamine agonist to preexisting levodopa therapy versus levodopa therapy alone in advanced Parkinson’s disease: a meta analysis. Int J Clin Pract 63:613–623PubMedCrossRefGoogle Scholar
  53. 53.
    Stocchi F, Hersh BP, Scott BL, Nausieda PA, Giorgi L (2008) Ease-PD Monotherapy Study Investigators. Ropinirole 24-h prolonged release and ropinirole immediate release in early Parkinson’s disease: a randomized, double-blind, non-inferiority crossover study. Curr Med Res Opin 24:2883–2895PubMedCrossRefGoogle Scholar
  54. 54.
    Rascol O, Barone P, Hauser RA et al (2010) Pramipexole Switch Study Group Efficacy, safety, and tolerability of overnight switching from immediate- to once daily extended-release pramipexole in early Parkinson’s disease. Mov Disord 25:2326–2332PubMedCrossRefGoogle Scholar
  55. 55.
    Hauser RA, Schapira AH, Rascol O et al (2010) Randomized, double-blind, multicenter evaluation of pramipexole extended release once daily in early Parkinson’s disease. Mov Disord 25:2542–2549PubMedCrossRefGoogle Scholar
  56. 56.
    Jankovic J, Watts RL, Martin W, Boroojerdi B (2007) Transdermal rotigotine: double-blind, placebo-controlled trial in Parkinson disease. Arch Neurol 64:676–682PubMedCrossRefGoogle Scholar
  57. 57.
    Giladi N, Boroojerdi B, Korczyn AD, Burn DJ, Clarke CE, Schapira AH, SP513 investigators (2007) Rotigotine transdermal patch in early Parkinson’s disease: a randomized, double-blind, controlled study versus placebo and ropinirole. Mov Disord 22:2398–2404PubMedCrossRefGoogle Scholar
  58. 58.
    Watts RL, Lyons KE, Pahwa R et al (2010) Onset of dyskinesia with adjunct ropinirole prolonged-release or additional levodopa in early Parkinson’s disease. Mov Disord 25:858–866PubMedCrossRefGoogle Scholar
  59. 59.
    Pahwa R, Stacy MA, Factor SA et al (2007) EASE-PD. Ropinirole 24-h prolonged release: randomized, controlled study in advanced Parkinson disease. Neurology 68:1108–1115PubMedCrossRefGoogle Scholar
  60. 60.
    Stocchi F, Giorgi L, Hunter B, Schapira AH. PREPARED: comparison of prolonged and immediate release ropinirole in advanced Parkinson’s disease. Mov Disord (in press)Google Scholar
  61. 61.
    LeWitt PA, Lyons KE, Pahwa R, SP 650 Study Group (2007) Advanced Parkinson disease treated with rotigotine transdermal system: PREFER Study. Neurology 68:1262–1267PubMedCrossRefGoogle Scholar
  62. 62.
    Poewe WH, Rascol O, Quinn N et al (2007) Efficacy of pramipexole and transdermal rotigotine in advanced Parkinson’s disease: a double-blind, double-dummy, randomised controlled trial. Lancet Neurol 6:513–520PubMedCrossRefGoogle Scholar
  63. 63.
    Trenkwalder C, Kies B, Rudzinska M et al (2011) Rotigotine effects on early morning motor function and sleep in Parkinson’s disease: A double-blind, randomized, placebo-controlled study (RECOVER). Mov Disord 1:90–99CrossRefGoogle Scholar
  64. 64.
    Stocchi F (2005) Pathological gambling in Parkinson’s disease. Lancet Neurol 4:590–592PubMedCrossRefGoogle Scholar
  65. 65.
    Driver-Dunckley E, Samanta J, Stacy M (2003) Pathological gambling associated with dopamine agonist therapy in Parkinson’s disease. Neurology 61:422–423PubMedGoogle Scholar
  66. 66.
    Nirenberg MJ, Waters C (2006) Compulsive eating and weight gain related to dopamine agonist use. Mov Disord 21:524–529PubMedCrossRefGoogle Scholar
  67. 67.
    Brodsky MA, Godbold J, Roth T, Olanow CW (2003) Sleepiness in Parkinson’s disease: a controlled study. Mov Disord 18:668–672PubMedCrossRefGoogle Scholar
  68. 68.
    Zanettini R, Antonini A, Gatto G et al (2007) Valvular heart disease and the use of dopamine agonists for Parkinson’s disease. N Engl J Med 35:639–646Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute of Neurology, Institute for Research and Medical Care IRCCS “San Raffaele”RomeItaly

Personalised recommendations