Journal of Neurology

, Volume 258, Issue 5, pp 840–854 | Cite as

EEG low-resolution brain electromagnetic tomography (LORETA) in Huntington’s disease

  • Annamaria PainoldEmail author
  • Peter Anderer
  • Anna K. Holl
  • Martin Letmaier
  • Gerda M. Saletu-Zyhlarz
  • Bernd Saletu
  • Raphael M. Bonelli
Original Communication


Previous studies have shown abnormal electroencephalography (EEG) in Huntington’s disease (HD). The aim of the present investigation was to compare quantitatively analyzed EEGs of HD patients and controls by means of low-resolution brain electromagnetic tomography (LORETA). Further aims were to delineate the sensitivity and utility of EEG LORETA in the progression of HD, and to correlate parameters of cognitive and motor impairment with neurophysiological variables. In 55 HD patients and 55 controls a 3-min vigilance-controlled EEG (V-EEG) was recorded during midmorning hours. Power spectra and intracortical tomography were computed by LORETA in seven frequency bands and compared between groups. Spearman rank correlations were based on V-EEG and psychometric data. Statistical overall analysis by means of the omnibus significance test demonstrated significant (p < 0.01) differences between HD patients and controls. LORETA theta, alpha and beta power were decreased from early to late stages of the disease. Only advanced disease stages showed a significant increase in delta power, mainly in the right orbitofrontal cortex. Correlation analyses revealed that a decrease of alpha and theta power correlated significantly with increasing cognitive and motor decline. LORETA proved to be a sensitive instrument for detecting progressive electrophysiological changes in HD. Reduced alpha power seems to be a trait marker of HD, whereas increased prefrontal delta power seems to reflect worsening of the disease. Motor function and cognitive function deteriorate together with a decrease in alpha and theta power. This data set, so far the largest in HD research, helps to elucidate remaining uncertainties about electrophysiological abnormalities in HD.


Huntington’s disease (HD) Electroencephalography (EEG) Low-resolution brain electromagnetic tomography (LORETA) Power spectral analysis Correlation analysis Stages of the disease 



The authors would like to express their thanks to Josef Diez, MD, and Franz Reisecker, MD, Department of Neurology, Barmherzige Brüder Hospital of Graz, for their cooperative assistance in this project. Furthermore, we thank Mag. Elisabeth Grätzhofer, Department of Psychiatry, Medical University of Vienna, for her valuable editorial assistance.

Conflict of interest

The authors have no conflict of interest to declare.


  1. 1.
    Rosas HD, Koroshetz WJ, Chen YI, Skeuse C, Vangel M, Cudkowicz ME, Caplan K, Marek K, Seidman LJ, Makris N, Jenkins BG, Goldstein JM (2003) Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 60:1615–1620PubMedGoogle Scholar
  2. 2.
    Rosas HD, Liu AK, Hersch S, Glessner M, Ferrante RJ, Salat DH, van der Kouwe A, Jenkins BG, Dale AM, Fischl B (2002) Regional and progressive thinning of the cortical ribbon in Huntington’s disease. Neurology 58:695–701PubMedGoogle Scholar
  3. 3.
    Aylward EH, Li Q, Stine OC, Ranen N, Sherr M, Barta PE, Bylsma FW, Pearlson GD, Ross CA (1997) Longitudinal change in basal ganglia volume in patients with Huntington’s disease. Neurology 48:394–399PubMedGoogle Scholar
  4. 4.
    Hasselbalch SG, Oberg G, Sorensen SA, Andersen AR, Waldemar G, Schmidt JF, Fenger K, Paulson OB (1992) Reduced regional cerebral blood flow in Huntington’s disease studied by SPECT. J Neurol Neurosurg Psychiatry 55:1018–1023PubMedCrossRefGoogle Scholar
  5. 5.
    Kassubek J, Juengling FD, Kioschies T, Henkel K, Karitzky J, Kramer B, Ecker D, Andrich J, Saft C, Kraus P, Aschoff AJ, Ludolph AC, Landwehrmeyer GB (2004) Topography of cerebral atrophy in early Huntington’s disease: a voxel based morphometric MRI study. J Neurol Neurosurg Psychiatry 75:213–220PubMedGoogle Scholar
  6. 6.
    Kassubek J, Bernhard Landwehrmeyer G, Ecker D, Juengling FD, Muche R, Schuller S, Weindl A, Peinemann A (2004) Global cerebral atrophy in early stages of Huntington’s disease: quantitative MRI study. Neuroreport 15:363–365PubMedCrossRefGoogle Scholar
  7. 7.
    Aylward EH, Anderson NB, Bylsma FW, Wagster MV, Barta PE, Sherr M, Feeney J, Davis A, Rosenblatt A, Pearlson GD, Ross CA (1998) Frontal lobe volume in patients with Huntington’s disease. Neurology 50:252–258PubMedGoogle Scholar
  8. 8.
    Halliday GM, McRitchie DA, Macdonald V, Double KL, Trent RJ, McCusker E (1998) Regional specificity of brain atrophy in Huntington’s disease. Exp Neurol 154:663–672PubMedCrossRefGoogle Scholar
  9. 9.
    Sotrel A, Paskevich PA, Kiely DK, Bird ED, Williams RS, Myers RH (1991) Morphometric analysis of the prefrontal cortex in Huntington’s disease. Neurology 41:1117–1123PubMedGoogle Scholar
  10. 10.
    Hedreen JC, Peyser CE, Folstein SE, Ross CA (1991) Neuronal loss in layers V and VI of cerebral cortex in Huntington’s disease. Neurosci Lett 133:257–261PubMedCrossRefGoogle Scholar
  11. 11.
    Mann DM, Oliver R, Snowden JS (1993) The topographic distribution of brain atrophy in Huntington’s disease and progressive supranuclear palsy. Acta Neuropathol 85:553–559PubMedGoogle Scholar
  12. 12.
    Rosas HD, Salat DH, Lee SY, Zaleta AK, Pappu V, Fischl B, Greve D, Hevelone N, Hersch SM (2008) Cerebral cortex and the clinical expression of Huntington’s disease: complexity and heterogeneity. Brain 131:1057–1068PubMedCrossRefGoogle Scholar
  13. 13.
    Starkstein SE, Brandt J, Bylsma F, Peyser C, Folstein M, Folstein SE (1992) Neuropsychological correlates of brain atrophy in Huntington’s disease: a magnetic resonance imaging study. Neuroradiology 34:487–489PubMedCrossRefGoogle Scholar
  14. 14.
    Starkstein SE, Brandt J, Folstein S, Strauss M, Berthier ML, Pearlson GD, Wong D, McDonnell A, Folstein M (1988) Neuropsychological and neuroradiological correlates in Huntington’s disease. J Neurol Neurosurg Psychiatry 51:1259–1263PubMedCrossRefGoogle Scholar
  15. 15.
    Lefaucheur JP, Bachoud-Levi AC, Bourdet C, Grandmougin T, Hantraye P, Cesaro P, Degos JD, Peschanski M, Lisovoski F (2002) Clinical relevance of electrophysiological tests in the assessment of patients with Huntington’s disease. Mov Disord 17:1294–1301PubMedCrossRefGoogle Scholar
  16. 16.
    Streletz LJ, Reyes PF, Zalewska M, Katz L, Fariello RG (1990) Computer analysis of EEG activity in dementia of the Alzheimer’s type and Huntington’s disease. Neurobiol Aging 11:15–20PubMedCrossRefGoogle Scholar
  17. 17.
    Bylsma FW, Peyser CE, Folstein SE, Folstein MF, Ross C, Brandt J (1994) EEG power spectra in Huntington’s disease: clinical and neuropsychological correlates. Neuropsychologia 32:137–150PubMedCrossRefGoogle Scholar
  18. 18.
    Bellotti R, De Carlo F, Massafra R, de Tommaso M, Sciruicchio V (2004) Topographic classification of EEG patterns in Huntington’s disease. Neurol Clin Neurophysiol 2004:37PubMedGoogle Scholar
  19. 19.
    de Tommaso M, De Carlo F, Difruscolo O, Massafra R, Sciruicchio V, Bellotti R (2003) Detection of subclinical brain electrical activity changes in Huntington’s disease using artificial neural networks. Clin Neurophysiol 114:1237–1245PubMedCrossRefGoogle Scholar
  20. 20.
    Sishta SK, Troupe A, Marszalek KS, Kremer LM (1974) Huntington’s chorea: an electroencephalographic and psychometric study. Electroencephalogr Clin Neurophysiol 36:387–393PubMedCrossRefGoogle Scholar
  21. 21.
    Scott DF, Heathfield KW, Toone B, Margerison JH (1972) The EEG in Huntington’s chorea: a clinical and neuropathological study. J Neurol Neurosurg Psychiatry 35:97–102PubMedCrossRefGoogle Scholar
  22. 22.
    Kassubek J, Juengling FD, Ecker D, Landwehrmeyer GB (2005) Thalamic atrophy in Huntington’s disease co-varies with cognitive performance: a morphometric MRI analysis. Cereb Cortex 15:846–853PubMedCrossRefGoogle Scholar
  23. 23.
    Margerison JH, Scott DF (1965) Huntington’s chorea: clinical, EEG and neuropathological findings. Electroencephalogr Clin Neurophysiol 19:314–316CrossRefGoogle Scholar
  24. 24.
    Foster DB, Bagchi BK (1949) Electroencephalographic observations in Huntington’s chorea. Electroencephalogr Clin Neurophysiol 1:247–248Google Scholar
  25. 25.
    Painold A, Anderer P, Holl AK, Letmaier M, Saletu-Zyhlarz GM, Saletu B, Bonelli RM (2010) Comparative EEG mapping studies in Huntington’s disease patients and controls. J Neural Transm 117:1307–1318Google Scholar
  26. 26.
    Babiloni C, Binetti G, Cassarino A, Dal Forno G, Del Percio C, Ferreri F, Ferri R, Frisoni G, Galderisi S, Hirata K, Lanuzza B, Miniussi C, Mucci A, Nobili F, Rodriguez G, Luca Romani G, Rossini PM (2006) Sources of cortical rhythms in adults during physiological aging: a multicentric EEG study. Hum Brain Mapp 27:162–172PubMedCrossRefGoogle Scholar
  27. 27.
    Anderer P, Saletu B, Pascual-Marqui RD, Semlitsch HV (2000) EEG and ERP topography and tomography in normal aging. In: Saletu B, Krijzer F, Ferber G, Anderer P (eds) Electrophysiological brain research in preclinical and clinical pharmacology and related fields–an update. Facultas, Wien, pp 122–138Google Scholar
  28. 28.
    Van Sweden B, Wauquier A, Niedermeyer E (1999) Normal aging and transient cognitive disorders in the elderly. In: Niedermeyer E, Da Silva FL (eds) Electroencephalography: basic principles, clinical applications and related fields, 4th edn. Williams & Wilkins, Baltimore, pp 340–348Google Scholar
  29. 29.
    Prichep LS (2007) Quantitative EEG and electromagnetic brain imaging in aging and in the evolution of dementia. Ann N Y Acad Sci 1097:156–167PubMedCrossRefGoogle Scholar
  30. 30.
    Prichep LS, John ER, Ferris SH, Reisberg B, Almas M, Alper K, Cancro R (1994) Quantitative EEG correlates of cognitive deterioration in the elderly. Neurobiol Aging 15:85–90PubMedCrossRefGoogle Scholar
  31. 31.
    Brunovsky M, Matousek M, Edman A, Cervena K, Krajca V (2003) Objective assessment of the degree of dementia by means of EEG. Neuropsychobiology 48:19–26PubMedCrossRefGoogle Scholar
  32. 32.
    Dierks T, Perisic I, Frolich L, Ihl R, Maurer K (1991) Topography of the quantitative electroencephalogram in dementia of the Alzheimer type: relation to severity of dementia. Psychiatry Res 40:181–194PubMedCrossRefGoogle Scholar
  33. 33.
    Helkala EL, Laulumaa V, Soikkeli R, Partanen J, Soininen H, Riekkinen PJ (1991) Slow-wave activity in the spectral analysis of the electroencephalogram is associated with cortical dysfunctions in patients with Alzheimer’s disease. Behav Neurosci 105:409–415PubMedCrossRefGoogle Scholar
  34. 34.
    Rice DM, Buchsbaum MS, Starr A, Auslander L, Hagman J, Evans WJ (1990) Abnormal EEG slow activity in left temporal areas in senile dementia of the Alzheimer type. J Gerontol 45:M145–M151PubMedGoogle Scholar
  35. 35.
    John ER, Prichep LS, Fridman J, Easton P (1988) Neurometrics: computer-assisted differential diagnosis of brain dysfunctions. Science 239:162–169PubMedCrossRefGoogle Scholar
  36. 36.
    Anderer P, Saletu B, Kloppel B, Semlitsch HV, Werner H (1994) Discrimination between demented patients and normals based on topographic EEG slow wave activity: comparison between z statistics, discriminant analysis and artificial neural network classifiers. Electroencephalogr Clin Neurophysiol 91:108–117PubMedCrossRefGoogle Scholar
  37. 37.
    Gianotti LR, Kunig G, Lehmann D, Faber PL, Pascual-Marqui RD, Kochi K, Schreiter-Gasser U (2007) Correlation between disease severity and brain electric LORETA tomography in Alzheimer’s disease. Clin Neurophysiol 118:186–196PubMedCrossRefGoogle Scholar
  38. 38.
    Mattia D, Babiloni F, Romigi A, Cincotti F, Bianchi L, Sperli F, Placidi F, Bozzao A, Giacomini P, Floris R, Grazia Marciani M (2003) Quantitative EEG and dynamic susceptibility contrast MRI in Alzheimer’s disease: a correlative study. Clin Neurophysiol 114:1210–1216PubMedCrossRefGoogle Scholar
  39. 39.
    Saletu B, Anderer P, Saletu-Zyhlarz GM, Pascual-Marqui RD (2005) EEG mapping and low-resolution brain electromagnetic tomography (LORETA) in diagnosis and therapy of psychiatric disorders: evidence for a key-lock principle. Clin EEG Neurosci 36:108–115PubMedGoogle Scholar
  40. 40.
    Saletu B, Anderer P, Paulus E, Grunberger J, Wicke L, Neuhold A, Fischhof PK, Litschauer G (1991) EEG brain mapping in diagnostic and therapeutic assessment of dementia. Alzheimer Dis Assoc Disord 5(Suppl 1):S57–S75PubMedCrossRefGoogle Scholar
  41. 41.
    Schreiter-Gasser U, Gasser T, Ziegler P (1994) Quantitative EEG analysis in early onset Alzheimer’s disease: correlations with severity, clinical characteristics, visual EEG and CCT. Electroencephalogr Clin Neurophysiol 90:267–272PubMedCrossRefGoogle Scholar
  42. 42.
    Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18:49–65PubMedCrossRefGoogle Scholar
  43. 43.
    Pascual-Marqui RD, Lehmann D, Koenig T, Kochi K, Merlo MC, Hell D, Koukkou M (1999) Low resolution brain electromagnetic tomography (LORETA) functional imaging in acute, neuroleptic-naive, first-episode, productive schizophrenia. Psychiatry Res 90:169–179PubMedCrossRefGoogle Scholar
  44. 44.
    de Peralta Menendez RG, Andino SL (2000) Discussing the capabilities of Laplacian Minimization. Brain Topogr 13:97–104PubMedCrossRefGoogle Scholar
  45. 45.
    Kincses WE, Braun C, Kaiser S, Elbert T (1999) Modeling extended sources of event-related potentials using anatomical and physiological constraints. Hum Brain Mapp 8:182–193PubMedCrossRefGoogle Scholar
  46. 46.
    Michel CM, Grave de Peralta R, Lantz G, Gonzalez Andino S, Spinelli L, Blanke O, Landis T, Seeck M (1999) Spatiotemporal EEG analysis and distributed source estimation in presurgical epilepsy evaluation. J Clin Neurophysiol 16:239–266PubMedCrossRefGoogle Scholar
  47. 47.
    Pascual-Marqui RD, Esslen M, Kochi K, Lehmann D (2002) Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review. Methods Find Exp Clin Pharmacol 24(Suppl C):91–95PubMedGoogle Scholar
  48. 48.
    Phillips C, Rugg MD, Friston KJ (2002) Anatomically informed basis functions for EEG source localization: combining functional and anatomical constraints. Neuroimage 16:678–695PubMedCrossRefGoogle Scholar
  49. 49.
    Phillips C, Rugg MD, Fristont KJ (2002) Systematic regularization of linear inverse solutions of the EEG source localization problem. Neuroimage 17:287–301PubMedCrossRefGoogle Scholar
  50. 50.
    Yao D, He B (2001) A self-coherence enhancement algorithm and its application to enhancing three-dimensional source estimation from EEGs. Ann Biomed Eng 29:1019–1027PubMedCrossRefGoogle Scholar
  51. 51.
    de Tommaso M, Difruscolo O, Sciruicchio V, Specchio N, Livrea P (2007) Abnormalities of the contingent negative variation in Huntington’s disease: correlations with clinical features. J Neurol Sci 254:84–89PubMedCrossRefGoogle Scholar
  52. 52.
    Beste C, Saft C, Andrich J, Gold R, Falkenstein M (2008) Response inhibition in Huntington’s disease-a study using ERPs and sLORETA. Neuropsychologia 46:1290–1297PubMedCrossRefGoogle Scholar
  53. 53.
    Huntington Study Group (1996) Unified Huntington’s disease rating scale: reliability and consistency. Mov Disord 11:136–142CrossRefGoogle Scholar
  54. 54.
    Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198PubMedCrossRefGoogle Scholar
  55. 55.
    Shoulson I, Fahn S (1979) Huntington disease: clinical care and evaluation. Neurology 29:1–3PubMedGoogle Scholar
  56. 56.
    Anderer P, Semlitsch HV, Saletu B, Barbanoj MJ (1992) Artifact processing in topographic mapping of electroencephalographic activity in neuropsychopharmacology. Psychiatry Res 45:79–93PubMedCrossRefGoogle Scholar
  57. 57.
    Anderer P, Saletu B, Kinsperger K, Semlitsch H (1987) Topographic brain mapping of EEG in neuropsychopharmacology–Part I. Methodological aspects. Methods Find Exp Clin Pharmacol 9:371–384PubMedGoogle Scholar
  58. 58.
    Kubicki S, Herrmann WM, Fichte K, Freund G (1979) Reflections on the topics: EEG frequency bands and regulation of vigilance. Pharmakopsychiatr Neuropsychopharmakol 12:237–245PubMedGoogle Scholar
  59. 59.
    Ary JP, Klein SA, Fender DH (1981) Location of sources of evoked scalp potentials: corrections for skull and scalp thicknesses. IEEE Trans Biomed Eng 28:447–452PubMedCrossRefGoogle Scholar
  60. 60.
    Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, StuttgartGoogle Scholar
  61. 61.
    Towle VL, Bolanos J, Suarez D, Tan K, Grzeszczuk R, Levin DN, Cakmur R, Frank SA, Spire JP (1993) The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy. Electroencephalogr Clin Neurophysiol 86:1–6PubMedCrossRefGoogle Scholar
  62. 62.
    Holmes AP, Blair RC, Watson JD, Ford I (1996) Nonparametric analysis of statistic images from functional mapping experiments. J Cereb Blood Flow Metab 16:7–22PubMedCrossRefGoogle Scholar
  63. 63.
    Friston K (1996) Statistical parametric mapping and other analyses of functional imaging data. In: Tago AW, Maziotta JC (eds) Brain Mapping. Academic Press, San Diego, pp 363–386Google Scholar
  64. 64.
    Cross EM, Chaffin WW (1982) Use of the binomial theorem in interpreting results of multiple tests of significance. Educ Psychol Measurement 42:25–34CrossRefGoogle Scholar
  65. 65.
    Babiloni C, Binetti G, Cassetta E, Cerboneschi D, Dal Forno G, Del Percio C, Ferreri F, Ferri R, Lanuzza B, Miniussi C, Moretti DV, Nobili F, Pascual-Marqui RD, Rodriguez G, Romani GL, Salinari S, Tecchio F, Vitali P, Zanetti O, Zappasodi F, Rossini PM (2004) Mapping distributed sources of cortical rhythms in mild Alzheimer’s disease. A multicentric EEG study. Neuroimage 22:57–67PubMedCrossRefGoogle Scholar
  66. 66.
    Hughes SW, Crunelli V (2005) Thalamic mechanisms of EEG alpha rhythms and their pathological implications. Neuroscientist 11:357–372PubMedCrossRefGoogle Scholar
  67. 67.
    Alper KR, John ER, Brodie J, Gunther W, Daruwala R, Prichep LS (2006) Correlation of PET and qEEG in normal subjects. Psychiatry Res 146:271–282PubMedCrossRefGoogle Scholar
  68. 68.
    Head H (1923) The conception of nervous and mental energy. II. Vigilance: a physiological state of the nervous system. Br J Psychol 14:125–147Google Scholar
  69. 69.
    Bente D (1977) Vigilance: psychophysiologic aspects. Verh Dtsch Ges Inn Med 83:945–952PubMedGoogle Scholar
  70. 70.
    Saletu B, Grunberger J (1985) Memory dysfunction and vigilance: neurophysiological and psychopharmacological aspects. Ann N Y Acad Sci 444:406–427PubMedCrossRefGoogle Scholar
  71. 71.
    Anokhin AP, Birbaumer N, Lutzenberger W, Nikolaev A, Vogel F (1996) Age increases brain complexity. Electroencephalogr Clin Neurophysiol 99:63–68PubMedCrossRefGoogle Scholar
  72. 72.
    Polich J (1997) EEG and ERP assessment of normal aging. Electroencephalogr Clin Neurophysiol 104:244–256PubMedCrossRefGoogle Scholar
  73. 73.
    Holschneider DP, Leuchter AF (1995) Beta activity in aging and dementia. Brain Topogr 8:169–180PubMedCrossRefGoogle Scholar
  74. 74.
    Gawel M, Zalewska E, Szmidt-Salkowska E, Kowalski J (2009) The value of quantitative EEG in differential diagnosis of Alzheimer’s disease and subcortical vascular dementia. J Neurol Sci 283:127–133PubMedCrossRefGoogle Scholar
  75. 75.
    Saletu B, Anderer P, Paulus E, Grunberger J, Wicke L, Neuhold A, Fischhof PK, Litschauer G (1991) EEG brain mapping in diagnostic and therapeutic assessment of dementia. Alzheimer Dis Assoc Disord 5(Suppl 1):57–75CrossRefGoogle Scholar
  76. 76.
    Muhlau M, Weindl A, Wohlschlager AM, Gaser C, Stadtler M, Valet M, Zimmer C, Kassubek J, Peinemann A (2007) Voxel-based morphometry indicates relative preservation of the limbic prefrontal cortex in early Huntington disease. J Neural Transm 114:367–372PubMedCrossRefGoogle Scholar
  77. 77.
    Thiruvady DR, Georgiou-Karistianis N, Egan GF, Ray S, Sritharan A, Farrow M, Churchyard A, Chua P, Bradshaw JL, Brawn TL, Cunnington R (2007) Functional connectivity of the prefrontal cortex in Huntington’s disease. J Neurol Neurosurg Psychiatry 78:127–133PubMedCrossRefGoogle Scholar
  78. 78.
    Dursun SM, Burke JG, Andrews H, Mlynik-Szmid A, Reveley MA (2000) The effects of antipsychotic medication on saccadic eye movement abnormalities in Huntington’s disease. Prog Neuropsychopharmacol Biol Psychiatry 24:889–896PubMedCrossRefGoogle Scholar
  79. 79.
    Schmidtke K, Manner H, Kaufmann R, Schmolck H (2002) Cognitive procedural learning in patients with fronto-striatal lesions. Learn Mem 9:419–429PubMedCrossRefGoogle Scholar
  80. 80.
    Bonelli RM, Cummings JL (2008) Frontal-subcortical dementias. Neurologist 14:100–107PubMedCrossRefGoogle Scholar
  81. 81.
    Joel D (2001) Open interconnected model of basal ganglia-thalamocortical circuitry and its relevance to the clinical syndrome of Huntington’s disease. Mov Disord 16:407–423PubMedCrossRefGoogle Scholar
  82. 82.
    Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381PubMedCrossRefGoogle Scholar
  83. 83.
    Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271PubMedCrossRefGoogle Scholar
  84. 84.
    Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577PubMedCrossRefGoogle Scholar
  85. 85.
    Hedreen JC, Folstein SE (1995) Early loss of neostriatal striosome neurons in Huntington’s disease. J Neuropathol Exp Neurol 54:105–120PubMedCrossRefGoogle Scholar
  86. 86.
    Alper K, Gunther W, Prichep LS, John ER, Brodie J (1998) Correlation of qEEG with PET in schizophrenia. Neuropsychobiology 38:50–56PubMedCrossRefGoogle Scholar
  87. 87.
    Gavazzi C, Nave RD, Petralli R, Rocca MA, Guerrini L, Tessa C, Diciotti S, Filippi M, Piacentini S, Mascalchi M (2007) Combining functional and structural brain magnetic resonance imaging in Huntington disease. J Comput Assist Tomogr 31:574–580PubMedCrossRefGoogle Scholar
  88. 88.
    Muhlau M, Gaser C, Wohlschlager AM, Weindl A, Stadtler M, Valet M, Zimmer C, Kassubek J, Peinemann A (2007) Striatal gray matter loss in Huntington’s disease is leftward biased. Mov Disord 22:1169–1173PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Annamaria Painold
    • 1
    Email author
  • Peter Anderer
    • 2
  • Anna K. Holl
    • 1
  • Martin Letmaier
    • 1
  • Gerda M. Saletu-Zyhlarz
    • 2
  • Bernd Saletu
    • 2
  • Raphael M. Bonelli
    • 3
  1. 1.Department of PsychiatryMedical University of GrazGrazAustria
  2. 2.Department of Psychiatry and PsychotherapyMedical University of ViennaViennaAustria
  3. 3.Sigmund Freud University ViennaViennaAustria

Personalised recommendations