Journal of Neurology

, Volume 258, Issue 5, pp 804–810 | Cite as

Patterns of cortical activity differ in ALS patients with limb and/or bulbar involvement depending on motor tasks

  • Katja KolleweEmail author
  • Thomas F. Münte
  • Amir Samii
  • Reinhard Dengler
  • Susanne Petri
  • Bahram Mohammadi
Original Communication


Functional magnetic resonance imaging (fMRI) of hand movements in amyotrophic lateral sclerosis (ALS) has repeatedly demonstrated increased activation in cortical and subcortical areas, whereas a single study has suggested decreased rather than increased activations for tongue movements in patients with bulbar involvement. This points to differences in the pathophysiology and may correspond to the different time-course of disease for patients with and without bulbar involvement. We, therefore, compared the cortical activity during movements of the tongue and right hand using fMRI to delineate the neurofunctional correlates of bulbar versus limb symptoms in 20 ALS patients (11 with bulbar signs) and age-matched controls. During vertical tongue movements, the cortical activation pattern in ALS patients without bulbar signs did not differ from the control group. However, presence of bulbar signs caused a significant decrease of cortical activation. An increased cortical activity during the hand movement in all ALS patients was evident, regardless of site of onset and presence of bulbar signs. Thus, two different patterns of cortical activation changes suggesting fundamental differences in the neurodegenerative process and subsequent reorganisation processes exist for limb and bulbar movements.


ALS fMRI Plasticity 



TFM is supported by grants of the DFG (SFB 779 TP A5) and BMBF (01GW0551).


  1. 1.
    del Aguila MA, Longstreth WT Jr, McGuire V, Koepsell TD, van Belle G (2003) Prognosis in amyotrophic lateral sclerosis: a population-based study. Neurology 60:813–819PubMedGoogle Scholar
  2. 2.
    Haverkamp LJ, Appel V, Appel SH (1995) Natural history of amyotrophic lateral sclerosis in a database population. Validation of a scoring system and a model for survival prediction. Brain 118(Pt 3):707–719PubMedCrossRefGoogle Scholar
  3. 3.
    Kaufmann P, Levy G, Thompson JL, Delbene ML, Battista V, Gordon PH, Rowland LP, Levin B, Mitsumoto H (2005) The ALSFRSr predicts survival time in an ALS clinic population. Neurology 64:38–43PubMedGoogle Scholar
  4. 4.
    Kollewe K, Mauss U, Krampfl K, Petri S, Dengler R, Mohammadi B (2008) ALSFRS-R score and its ratio: a useful predictor for ALS-progression. J Neurol Sci 275:69–73PubMedCrossRefGoogle Scholar
  5. 5.
    Magnus T, Beck M, Giess R, Puls I, Naumann M, Toyka KV (2002) Disease progression in amyotrophic lateral sclerosis: predictors of survival. Muscle Nerve 25:709–714PubMedCrossRefGoogle Scholar
  6. 6.
    Schoenfeld MA, Tempelmann C, Gaul C, Kuhnel GR, Duzel E, Hopf JM, Feistner H, Zierz S, Heinze HJ, Vielhaber S (2005) Functional motor compensation in amyotrophic lateral sclerosis. J Neurol 252:944–952PubMedCrossRefGoogle Scholar
  7. 7.
    Konrad C, Henningsen H, Bremer J, Mock B, Deppe M, Buchinger C, Turski P, Knecht S, Brooks B (2002) Pattern of cortical reorganization in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study. Exp Brain Res 143:51–56PubMedCrossRefGoogle Scholar
  8. 8.
    Mohammadi B, Kollewe K, Samii A, Dengler R, Münte T (2010) Functional neuroimaging at different disease stages reveals distinct phases of neuroplastic changes in amyotrophic lateral sclerosis. Hum Brain Mapp. doi: 10.1002/hbm.21064
  9. 9.
    Mohammadi B, Kollewe K, Samii A, Krampfl K, Dengler R, Munte TF (2009) Decreased brain activation to tongue movements in amyotrophic lateral sclerosis with bulbar involvement but not Kennedy syndrome. J Neurol 256:1263–1269PubMedCrossRefGoogle Scholar
  10. 10.
    Brooks BR, Miller RG, Swash M, Munsat TL (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299PubMedCrossRefGoogle Scholar
  11. 11.
    Paternostro-Sluga T, Grim-Stieger M, Posch M, Schuhfried O, Vacariu G, Mittermaier C, Bittner C, Fialka-Moser V (2008) Reliability and validity of the Medical Research Council (MRC) scale and a modified scale for testing muscle strength in patients with radial palsy. J Rehabil Med 40:665–671PubMedCrossRefGoogle Scholar
  12. 12.
    Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT (2000) Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10:120–131PubMedCrossRefGoogle Scholar
  13. 13.
    Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 16:4207–4221PubMedGoogle Scholar
  14. 14.
    Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878PubMedCrossRefGoogle Scholar
  15. 15.
    Sommer M, Tergau F, Wischer S, Reimers CD, Beuche W, Paulus W (1999) Riluzole does not have an acute effect on motor thresholds and the intracortical excitability in amyotrophic lateral sclerosis. J Neurol 246(Suppl 3):III22–III26PubMedCrossRefGoogle Scholar
  16. 16.
    Stefan K, Kunesch E, Benecke R, Classen J (2001) Effects of riluzole on cortical excitability in patients with amyotrophic lateral sclerosis. Ann Neurol 49:536–539PubMedCrossRefGoogle Scholar
  17. 17.
    Vucic S, Kiernan MC (2006) Axonal excitability properties in amyotrophic lateral sclerosis. Clin Neurophysiol 117:1458–1466PubMedCrossRefGoogle Scholar
  18. 18.
    Zanette G, Tamburin S, Manganotti P, Refatti N, Forgione A, Rizzuto N (2002) Changes in motor cortex inhibition over time in patients with amyotrophic lateral sclerosis. J Neurol 249:1723–1728PubMedCrossRefGoogle Scholar
  19. 19.
    Ziemann U, Winter M, Reimers CD, Reimers K, Tergau F, Paulus W (1997) Impaired motor cortex inhibition in patients with amyotrophic lateral sclerosis. Evidence from paired transcranial magnetic stimulation. Neurology 49:1292–1298PubMedGoogle Scholar
  20. 20.
    Nihei K, McKee AC, Kowall NW (1993) Patterns of neuronal degeneration in the motor cortex of amyotrophic lateral sclerosis patients. Acta Neuropathol 86:55–64PubMedCrossRefGoogle Scholar
  21. 21.
    Maekawa S, Leigh PN, King A, Jones E, Steele JC, Bodi I, Shaw CE, Hortobagyi T, Al Sarraj S (2009) TDP-43 is consistently co-localized with ubiquitinated inclusions in sporadic and Guam amyotrophic lateral sclerosis but not in familial amyotrophic lateral sclerosis with and without SOD1 mutations. Neuropathology 29:672–683PubMedCrossRefGoogle Scholar
  22. 22.
    Martin RE, MacIntosh BJ, Smith RC, Barr AM, Stevens TK, Gati JS, Menon RS (2004) Cerebral areas processing swallowing and tongue movement are overlapping but distinct: a functional magnetic resonance imaging study. J Neurophysiol 92:2428–2443PubMedCrossRefGoogle Scholar
  23. 23.
    Bailey EF, Rice AD, Fuglevand AJ (2007) Firing patterns of human genioglossus motor units during voluntary tongue movement. J Neurophysiol 97:933–936PubMedCrossRefGoogle Scholar
  24. 24.
    Coope S (1953) Muscle spindles in the intrinsic muscles of the human tongue. J Physiol 122:193–202Google Scholar
  25. 25.
    Kubota K, Negishi T, Masegi T (1975) Topological distribution of muscle spindles in the human tongue and its significance in proprioception. Bull Tokyo Med Dent Univ 22:235–242PubMedGoogle Scholar
  26. 26.
    Porter R (1966) Lingual mechanoreceptors activated by muscle twitch. J Physiol 183:101–111PubMedGoogle Scholar
  27. 27.
    Urban PP, Wicht S, Hopf HC (2001) Sensitivity of transcranial magnetic stimulation of cortico-bulbar vs. cortico-spinal tract involvement in amyotrophic lateral sclerosis (ALS). J Neurol 248:850–855PubMedCrossRefGoogle Scholar
  28. 28.
    Mohammadi B, Krampfl K, Moschref H, Dengler R, Bufler J (2001) Interaction of the neuroprotective drug riluzole with GABA(A) and glycine receptor channels. Eur J Pharmacol 415:135–140PubMedCrossRefGoogle Scholar
  29. 29.
    Benoit E, Escande D (1991) Riluzole specifically blocks inactivated Na channels in myelinated nerve fibre. Pflugers Arch 419:603–609PubMedCrossRefGoogle Scholar
  30. 30.
    Hebert T, Drapeau P, Pradier L, Dunn RJ (1994) Block of the rat brain IIA sodium channel alpha subunit by the neuroprotective drug riluzole. Mol Pharmacol 45:1055–1060PubMedGoogle Scholar
  31. 31.
    Doble A, Hubert JP, Blanchard JC (1992) Pertussis toxin pretreatment abolishes the inhibitory effect of riluzole and carbachol on D-[3H]aspartate release from cultured cerebellar granule cells. Neurosci Lett 140:251–254PubMedCrossRefGoogle Scholar
  32. 32.
    Caramia MD, Palmieri MG, Desiato MT, Iani C, Scalise A, Telera S, Bernardi G (2000) Pharmacologic reversal of cortical hyperexcitability in patients with ALS. Neurology 54:58–64PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Katja Kollewe
    • 1
    Email author
  • Thomas F. Münte
    • 2
  • Amir Samii
    • 3
  • Reinhard Dengler
    • 1
  • Susanne Petri
    • 1
  • Bahram Mohammadi
    • 2
    • 3
  1. 1.Department of Neurology and Clinical NeurophysiologyMedical School of HannoverHannoverGermany
  2. 2.Department of NeurologyUniversity of LübeckLübeckGermany
  3. 3.CNS-LABInternational Neuroscience Institute (INI)HannoverGermany

Personalised recommendations