Journal of Neurology

, Volume 257, Issue 8, pp 1406–1408 | Cite as

Diffusion tensor imaging reveals disease-specific deep cerebellar nuclear changes in cerebellar degeneration

  • Annie X. Du
  • Jennifer L. Cuzzocreo
  • Bennett A. Landman
  • David S. Zee
  • Jerry L. Prince
  • Sarah H. Ying
Letter to the editors

Dear Sirs,

Although cerebellar atrophy is a key sign in cerebellar ataxia, interpretation of magnetic resonance imaging (MRI) may be hindered by region-specific age-related degeneration and poor visualization of posterior fossa structures. Direct quantification of true cerebellar cortical volume on MRI is a time-consuming process that may be confounded by complex foliation, which introduces partial volume effects.

It may be simpler to calculate an index for disease progression for the deep cerebellar nuclei (DCN), which mediate virtually all cerebellar outflow along with the vestibular nuclei. Quantitative assessment of the DCN could be invaluable to diagnosis, staging, and prognosis in neurodegenerative diseases with cerebellar involvement. Progress in structural assessment has enabled DCN identification [1, 2, 3]; however, there may be variable signal and contrast on T1- and T2-weighted scans such that DCN are sometimes not detectable at all [2, 4].

Recently, our team developed...


Diffusion Tensor Imaging Cerebellar Ataxia Spinocerebellar Ataxia Deep Cerebellar Nucleus Cerebellar Degeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Arnold-Chiari Foundation, the Robin Zee Fund, the Dana Foundation Program for Brain and Immuno-Imaging, the National Organization for Rare Disorders, the National Alliance for Research on Schizophrenia and Depression, the Office of Naval Research NDSEGF (Landman), and the following NIH grants: K23EY015802, M01-RR00052, R21NS059830, R01NS054255, and R01NS056307. Special acknowledgments to Wade Mayes, Alex H. Sinofsky, and Katherine K. Loya for their invaluable contributions to this work.

Conflict of interest statement



  1. 1.
    Dimitrova A, Weber J, Redies C, Kindsvater K, Maschke M, Kolb FP, Forsting M, Diener HC, Timmann D (2002) MRI atlas of the human cerebellar nuclei. Neuroimage 17(1):240–255CrossRefPubMedGoogle Scholar
  2. 2.
    Dimitrova A, Zeljko D, Schwarze F, Maschke M, Gerwig M, Frings M, Beck A, Aurich V, Forsting M, Timmann D (2006) Probabilistic 3D MRI atlas of the human cerebellar dentate/interposed nuclei. Neuroimage 30(1):12–25CrossRefPubMedGoogle Scholar
  3. 3.
    Maschke M, Weber J, Dimitrova A, Bonnet U, Bohrenkämper J, Sturm S, Kindsvater K, Müller BW, Gastpar M, Diener HC, Forsting M, Timmann D (2004) Age-related changes of the dentate nuclei in normal adults as revealed by 3D fast low angle shot (FLASH) echo sequence magnetic resonance imaging. J Neurol 251(6):740–746CrossRefPubMedGoogle Scholar
  4. 4.
    Landman BA, Du AX, Mayes WD, Prince JL, Ying SH (2007) Diffusion tensor imaging enables robust mapping of the deep cerebellar nuclei. Organization for Human Brain Mapping, Chicago, IllinoisGoogle Scholar
  5. 5.
    Du AX, Landman BA, Zee DS, Prince JL, Ying SH (2007) Diffusion tensor imaging reveals disease-specific dentate nucleus changes in cerebellar degeneration. Organization for Human Brain Mapping, ChicagoGoogle Scholar
  6. 6.
    Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, Bryer A, Diener HC, Massaquoi S, Gomez CM, Coutinho P, Ben Hamida M, Campanella G, Filla A, Schut L, Timann D, Honnorat J, Nighoghossian N, Manyam B (1997) International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the world federation of neurology. J Neurol Sci 145(2):205–211CrossRefPubMedGoogle Scholar
  7. 7.
    McAuliffe MJ, Lalonde FM, McGarry D, Gandler W, Csaky K, Trus BL (2001) Medical image processing, analysis, and visualization in clinical research. Proceedings of the 14th IEEE symposium on computer-based medical systems, 381–386Google Scholar
  8. 8.
    Duvernoy HM (1995) The human brain stem and cerebellum. Springer, BerlinGoogle Scholar
  9. 9.
    Murata Y, Kawakami H, Yamaguchi S, Nishimura M, Kohriyama T, Ishizaki F, Matsuyama Z, Mimori Y, Nakamura S (1998) Characteristic magnetic resonance imaging findings in spinocerebellar ataxia 6. Arch Neurol 55(10):1348–1352CrossRefPubMedGoogle Scholar
  10. 10.
    Tashiro H, Suzuki SO, Hitotsumatsu T, Iwaki T (1999) An autopsy case of spinocerebellar ataxia type 6 with mental symptoms of schizophrenia and dementia. Clin Neuropathol 18(4):198–204PubMedGoogle Scholar
  11. 11.
    Schulz JB, Borkert J, Wolf S, Schmitz-Hübsch T, Rakowicz M, Mariotti C, Schoels L, Timmann D, van de Warrenburg B, Dürr A, Pandolfo M, Kang JS, Mandly AG, Nägele T, Grisoli M, Boguslawska R, Bauer P, Klockgether T, Hauser TK (2010) Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6. Neuroimage 49:158–168CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Annie X. Du
    • 1
  • Jennifer L. Cuzzocreo
    • 1
  • Bennett A. Landman
    • 2
  • David S. Zee
    • 1
  • Jerry L. Prince
    • 3
  • Sarah H. Ying
    • 1
  1. 1.Department of PathologyThe Johns Hopkins University School of MedicineBaltimoreUSA
  2. 2.BaltimoreUSA
  3. 3.BaltimoreUSA

Personalised recommendations