Advertisement

Journal of Neurology

, Volume 257, Issue 2, pp 238–246 | Cite as

Taste in mild cognitive impairment and Alzheimer’s disease

  • Silke SteinbachEmail author
  • Walter Hundt
  • Andreas Vaitl
  • Petra Heinrich
  • Stefan Förster
  • Katharina Bürger
  • Thomas Zahnert
Original Communication

Abstract

In this prospective study we investigated the quantitative and qualitative taste function of patients with mild cognitive impairment (MCI) and Alzheimer’s disease (AD). 29 healthy, elderly subjects, 29 MCI and 30 AD patients were tested using a validated taste test, the “taste strips”. Additionally, odor identification, odor discrimination, odor threshold, the mini-mental state examination (MMSE) and Apo E epsilon 4 status were examined. Regarding taste, there was a significant reduction of total taste scores and also the score for individual tastes on either side of the tongue between controls and MCI/AD patients. There was no significant difference in the taste scores between MCI and AD patients. A taste test may be a useful procedure for differentiating between healthy subjects and patients with MCI/AD in a clinical context. For diagnosing MCI versus AD, further tests such as smell test, MMSE, Apo E epsilon 4 status, FDG-PET and MRI appear to be useful.

Keywords

Mild cognitive impairment Alzheimer’s disease Taste 

References

  1. 1.
    Bacon AW, Bondi MW, Salmon DP, Murphy C (1998) Very early changes in olfactory functioning due to Alzheimer’s disease and the role of apolipoprotein E in olfaction. Ann N Y Acad Sci 855:723–731CrossRefPubMedGoogle Scholar
  2. 2.
    Bickel H (2001) Demenzen im höheren Lebensalter: Schätzungen des Vorkommens und der Versorgungskosten. Z Gerontol Geriatr 34:108–115CrossRefPubMedGoogle Scholar
  3. 3.
    Bobinski M, de Leon MJ, Wegiel J, Desanti S, Convit A, Saint Louis LA, Rusinek H, Wisniewski HM (2000) The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer’s disease. Neuroscience 95:721–725CrossRefPubMedGoogle Scholar
  4. 4.
    Braak H, Braak E (1996) Development of Alzheimer-related neurofibrillary changes in the neocortex inversely recapitulates cortical myelogenesis. Acta Neuropathol 92:197–201CrossRefPubMedGoogle Scholar
  5. 5.
    Braak H, Braak E (1998) Evolution of neuronal changes in the course of Alzheimer’s disease. J Neural Transm Suppl 53:127–140PubMedGoogle Scholar
  6. 6.
    Carlsson CM (2008) Lessons learned from failed and discontinued clinical trials for the treatment of Alzheimer’s disease: future directions. J Alzheimers Dis 15:327–338PubMedGoogle Scholar
  7. 7.
    Celone KA, Calhoun VD, Dickerson BC, Atri A, Chua EF, Miller SL, DePeau K, Rentz DM, Selkoe DJ, Blacker D, Albert MS, Sperling RA (2006) Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: an independent component analysis. J Neurosci 26:10222–10231CrossRefPubMedGoogle Scholar
  8. 8.
    Chetelat G, Desgranges B, De La Sayette V, Viader F, Eustache F, Baron JC (2003) Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology 60:1374–1377PubMedGoogle Scholar
  9. 9.
    Crum RM, Anthony JC, Bassett SS, Folstein MF (1993) Population-based norms for the mini-mental state examination by age and educational level. JAMA 269:2386–2391CrossRefPubMedGoogle Scholar
  10. 10.
    De Leon MJ, George AE, Golomb J, Tarshish C, Convit A, Kluger A, Desanti S, McRae T, Ferris SH, Reisberg B, Ince C, Rusinek H, Bobinski M, Quinn B, Miller DC, Wisniewski HM (1997) Frequency of hippocampal formation atrophy in normal aging and Alzheimer’s disease. Neurobiol Aging 18:1–11CrossRefPubMedGoogle Scholar
  11. 11.
    Delacourte A, David JP, Sergeant N, Buee L, Wattez A, Vermersch P, Ghozali F, Fallet-Bianco C, Pasquier F, Lebert F, Petit H, Di Menza C (1999) The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology 52:1158–1165PubMedGoogle Scholar
  12. 12.
    Devanand DP, Michaels-Marston KS, Liu X, Pelton GH, Padilla M, Marder K, Bell K, Stern Y, Mayeux R (2000) Olfactory deficit in patients with mild cognitive impairment predict Alzheimer’s disease at follow-up. Am J Psychiatry 157:1399–1405CrossRefPubMedGoogle Scholar
  13. 13.
    Djordjevic J, Jones-Gotman M, De Sousa K, Chertkow H (2008) Olfaction in patients with mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 29:693–706CrossRefPubMedGoogle Scholar
  14. 14.
    Doty RL, Reyes PF, Gregor T (1987) Presence of both odor identification and detection deficits in Alzheimer’s disease. Brain Res Bull 18:597–600CrossRefPubMedGoogle Scholar
  15. 15.
    Eibenstein A, Fioretti AB, Simaskou MN, Sucapane P, Mearelli S, Mina C, Amabile G, Fusetti M (2005) Olfactory screening test in mild cognitive impairment. Neurol Sci 26:156–160CrossRefPubMedGoogle Scholar
  16. 16.
    Folstein MF, Folstein SE, McHigh PR (1975) Mini mental state: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198CrossRefPubMedGoogle Scholar
  17. 17.
    Friedland RP, Brun A, Budinger TF (1985) Pathological and positron emission tomographic correlations in Alzheimer’s disease. Lancet 26:228CrossRefGoogle Scholar
  18. 18.
    Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich K, Belleville S, Brodaty H, Bennett D, Chertkow H, Cummings JL, de Leon M, Feldman H, Ganguli M, Hampel H, Scheltens P, Tierney MC, Whitehouse P, Winblad B (2006) Mild cognitive impairment. Lancet 367:1262–1270CrossRefPubMedGoogle Scholar
  19. 19.
    Herholz K, Carter SF, Jones M (2007) Positron emission tomography imaging in dementia. Br J Radiol 80:S160–S167CrossRefPubMedGoogle Scholar
  20. 20.
    Kobal G, Hummel T, Sekinger B, Barz S, Roscher S, Wolf S (1996) “Sniffin sticks”: screening of olfactory performance. Rhinology 34:222–226PubMedGoogle Scholar
  21. 21.
    Koss E, Friedland RP, Ober BA, Jagust WJ (1985) Differences in lateral hemispheric asymmetries of glucose utilization between early- and late-onset Alzheimer-type dementia. Am J Psychiatry 142:638–640PubMedGoogle Scholar
  22. 22.
    Koss E, Weiffenbach JM, Haxby JV, Friedland RP (1988) Olfactory detection and identification performance are dissociated in early Alzheimer’s disease. Neurology 38:1228–1232PubMedGoogle Scholar
  23. 23.
    Landis BN, Welge-Luessen A, Brämerson A, Bende M, Mueller CA, Nordin S, Hummel T (2009) “Taste strips”––a rapid, lateralized, gustatory bedside identification test based on impregnated filter papers. J Neurol 256:242–248CrossRefPubMedGoogle Scholar
  24. 24.
    Lang CJ, Leuschner T, Ulrich K, Stössel C, Heckmann JG, Hummel T (2006) Taste in dementing diseases and parkinsonism. J Neurol Sci 248:177–184CrossRefPubMedGoogle Scholar
  25. 25.
    McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–944PubMedGoogle Scholar
  26. 26.
    Mesholam RI, Moberg PJ, Mahr RN, Doty RL (1998) Olfaction in neurodegenerative disease: a meta-analysis of olfactory functioning in Alzheimer’s and Parkinson’s disease. Arch Neurol 55:84–90CrossRefPubMedGoogle Scholar
  27. 27.
    Mosconi L, Sorbi S, de Leon MJ, Li Y, Nacmias B, Myoung PS, Tsui W, Ginestroni A, Bessi V, Fayyazz M, Caffarra P, Pupi A (2006) Hypometabolism exceeds atrophy in presymptomatic early-onset familial Alzheimer’s disease. J Nucl Med 47:1778–1786PubMedGoogle Scholar
  28. 28.
    Mueller C, Kallert S, Renner B, Stiassny K, Temmel AF, Hummel T, Kobal G (2003) Quantitative assessment of gustatory function in a clinical context using impregnated “taste strips”. Rhinology 41:2–6PubMedGoogle Scholar
  29. 29.
    Nestor PJ, Fryer TD, Smielewski P, Hodges JR (2003) Limbic hypometabolism in Alzheimer’s disease and mild cognitive impairment. Ann Neurol 54:343–351CrossRefPubMedGoogle Scholar
  30. 30.
    Peters JM, Hummel T, Kratzsch T, Lotsch J, Skarke C, Frolich L (2003) Olfactory function in mild cognitive impairment and Alzheimer’s disease: an investigation using psychophysical and electrophysiological techniques. Am J Psychiatry 160:1995–2002CrossRefPubMedGoogle Scholar
  31. 31.
    Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rossor M, Thal L, Winblad B (2001) Current concepts in mild cognitive impairment. Arch Neurol 58:1985–1992CrossRefPubMedGoogle Scholar
  32. 32.
    Petersen RC, Smith GE, Ivnik RJ, Tangales EG, Schaid DJ, Thibodeau SN, Kokmen E, Waring SC, Kurland LT (1995) Apolipoprotein E status as a predictor of the development of Alzheimer’s disease in memory-impaired individuals. J Am Med Assoc 273:1274–1278CrossRefGoogle Scholar
  33. 33.
    Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56:303–308CrossRefPubMedGoogle Scholar
  34. 34.
    Schiffman SS, Clark CM, Warwick ZS (1990) Gustatory and olfactory dysfunction in dementia: not specific to Alzheimer’s disease. Neurobiol Aging 11:597–600CrossRefPubMedGoogle Scholar
  35. 35.
    Schiffman SS, Graham BG, Sattely-Miller EA, Zervakis J, Welsh-Bohmer K (2002) Taste, smell and neuropsychological performance of individuals at familial risk for Alzheimer’s disease. Neurobiol Aging 23:397–404CrossRefPubMedGoogle Scholar
  36. 36.
    Serby M, Larson P, Kalkstein D (1991) The nature and course of olfactory deficits in Alzheimer’s disease. Am J Psychiatry 148:357–360PubMedGoogle Scholar
  37. 37.
    Sewards TV (2004) Dual separate pathways for sensory and hedonic aspects of taste. Brain Res Bull 62:271–283CrossRefPubMedGoogle Scholar
  38. 38.
    Small DM, Gregory MD, Mak YE, Gitelman DR, Mesulam MM, Parrish TB (2003) Dissociation of neural representation of intensity and affective valuation in human gustation. Neuron 39:701–711CrossRefPubMedGoogle Scholar
  39. 39.
    Trojanowski JQ, Clark CM, Arai H, Lee VMY (1996) Elevated levels of tau in cerebrospinal fluid: implications for the antemortem diagnosis of Alzheimer’s disease. Alzheimers Dis Rev 1:77–83Google Scholar
  40. 40.
    Waldton S (1974) Clinical observations of impaired cranial nerve function in senile dementia. Acta Psychiatr Scand 50:539–547CrossRefPubMedGoogle Scholar
  41. 41.
    Wang QS, Tian L, Huang YL, Qin S, He LQ, Zhou JN (2002) Olfactory identification and apolipoprotein E epsilon 4 allele in mild cognitive impairment. Brain Res 951:77–81CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Silke Steinbach
    • 1
    Email author
  • Walter Hundt
    • 2
  • Andreas Vaitl
    • 3
  • Petra Heinrich
    • 4
  • Stefan Förster
    • 3
  • Katharina Bürger
    • 5
  • Thomas Zahnert
    • 1
  1. 1.Smell and Taste Clinic, Department of OtorhinolaryngologyTechnical UniversityDresdenGermany
  2. 2.Department of Clinical RadiologyLudwig-Maximilians-UniversityMunichGermany
  3. 3.Department of Nuclear MedicineLudwig-Maximilians-UniversityMunichGermany
  4. 4.Department of Medical Statistics and Epidemiology, Institut für medizinische Statistik und Epidemiologie, Klinikum rechts der IsarTechnische Universitaet MuenchenMunichGermany
  5. 5.Department of Psychiatry and PsychotherapyLudwig-Maximilians-UniversityMunichGermany

Personalised recommendations