Journal of Neurology

, Volume 256, Issue 11, pp 1939–1942 | Cite as

Orthogonal diffusion-weighted MRI measures distinguish region-specific degeneration in cerebellar ataxia subtypes

  • Sarah H. YingEmail author
  • Bennett A. Landman
  • Shwetadwip Chowdhury
  • Alexander H. Sinofsky
  • Anna Gambini
  • Susumu Mori
  • David S. Zee
  • Jerry L. Prince
Letter to the editors


The cerebellar peduncles are excellent candidates for composite indicators of regional degeneration in posterior fossa structures, as the peduncles show histopathological changes in degenerative ataxia. We postulate that magnetic resonance imaging will reveal evidence of disease specific peduncle degeneration through macrostructural (cross-sectional area) and microstructural (fractional anisotropy, mean diffusivity) measures. This study presents a “proof of principle” using orthogonal diffusion tensor imaging cross-sections of the cerebellar peduncles to distinguish categories of cerebellar disease.


Fractional Anisotropy Diffusion Tensor Imaging Mean Diffusivity Cerebellar Ataxia White Matter Tract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Arnold-Chiari Foundation, the Robin Zee Fund, the Dana Foundation Program for Brain and Immuno-Imaging, the National Organization for Rare Disorders, and the following NIH grants: 1K23EY015802, 5T32DC00023, R01EY01849, R01NS056307, and R21NS059830. Special acknowledgements to Andrew S. K. Liu, Katherine K. Loya, and Jennifer L. Cuzzocreo for their invaluable assistance.

Conflict of interest statement

The authors have reported no conflicts of interest.


  1. 1.
    Berciano J, Boesch S, Perez-Ramos JM, Wenning GK (2006) Olivopontocerebellar atrophy: toward a better nosological definition. Mov Disord 21:1607–1613CrossRefPubMedGoogle Scholar
  2. 2.
    Landman BA, Chowdhury S, Sinofsky AH, Liu ASK, Mori S, Zee DS, Prince JL, Ying SH (2006) Delineation of cerebellar fiber tracts on anatomically aligned planes with ViPAR, a novel MRI visualization and manipulation tool. Organization for Human Brain Mapping, FlorenceGoogle Scholar
  3. 3.
    McAuliffe MJ, Lalonde F, McGarry DP, Gandler W, Csaky K, Trus BL (2001). Medical image processing, analysis and visualization in clinical research. In: Proceedings of the 14th IEEE symposium on computer-based medical systems (CBMS 2001)Google Scholar
  4. 4.
    Mandelli ML, De ST, Minati L, Bruzzone MG, Mariotti C, Fancellu R, Savoiardo M, Grisoli M (2007) Diffusion tensor imaging of spinocerebellar ataxias types 1 and 2. Am J Neuroradiol 28:1996–2000CrossRefPubMedGoogle Scholar
  5. 5.
    Shiga K, Yamada K, Yoshikawa K, Mizuno T, Nishimura T, Nakagawa M (2005) Local tissue anisotropy decreases in cerebellopetal fibers and pyramidal tract in multiple system atrophy. J Neurol 252:589–596CrossRefPubMedGoogle Scholar
  6. 6.
    Murata Y, Kawakami H, Yamaguchi S, Nishimura M, Kohriyama T, Ishizaki F, Matsuyama Z, Mimori Y, Nakamura S (1998) Characteristic magnetic resonance imaging findings in spinocerebellar ataxia 6. Arch Neurol 55:1348–1352CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Sarah H. Ying
    • 1
    Email author
  • Bennett A. Landman
    • 2
  • Shwetadwip Chowdhury
    • 3
  • Alexander H. Sinofsky
    • 4
  • Anna Gambini
    • 5
  • Susumu Mori
    • 5
  • David S. Zee
    • 1
  • Jerry L. Prince
    • 6
  1. 1.BaltimoreUSA
  2. 2.BaltimoreUSA
  3. 3.BaltimoreUSA
  4. 4.New YorkUSA
  5. 5.BaltimoreUSA
  6. 6.BaltimoreUSA

Personalised recommendations