Journal of Neurology

, 257:63

MRI characteristics of patients with antiphospholipid syndrome and multiple sclerosis

  • Milena Stosic
  • Julian Ambrus
  • Neeta Garg
  • Bianca Weinstock-Guttman
  • Murali Ramanathan
  • Bernadette Kalman
  • Alireza Minagar
  • Frederick E. Munschauer
  • Timothy M. Galey
  • Sara Hussein
  • Rohit Bakshi
  • Robert Zivadinov
Original Communication

Abstract

MRI findings of primary anti-phospholipid antibody syndrome (PAPLS) are difficult to distinguish from those of multiple sclerosis (MS). Only a few previous studies have compared conventional and non-conventional MRI findings in MS and PAPLS patients. In addition, MRI differences between anti-phospholipid antibody (APLA) positive (+) and APLA negative (−) MS patients have not been reported. Therefore, the aim of this study was to investigate the differences in MRI measures among patients with PAPLS, MS and normal control (NC) subjects. We also explored non-conventional MRI measures in APLA+ and APLA− MS patients. Forty-nine (49) consecutive MS patients among whom 39 had relapsing-remitting (RR) and 10 secondary-progressive (SP) disease course, 30 patients with PAPLS and 49 NC were enrolled. Twenty-eight (28) MS patients were APLA+. MRI measures of T1- and T2-lesion volumes (LV) and brain atrophy, including fractions of whole brain (BPF), gray matter (GMF) and white matter (WMF), were evaluated. The magnetization transfer ratio (MTR) of T2- and T1-LVs and different normal-appearing brain tissue (NABT) compartments as well as diffusion-weighted imaging of whole brain mean parenchyma diffusivity (MPD) were obtained. MS patients differed significantly from NC in all MRI measures. PAPLS patients differed from NC in their T2-LV, in MTR measures and in MPD. When MS patients were compared to PAPLS patients, they showed significantly higher T2- and T1-LVs and T2-LV MTR, lower BPF and GMF and higher MPD. APLA+ RR and SPMS (all APLA+) patients showed significantly higher T2-LV, lower GMF, lower normal-appearing gray matter MTR and higher MPD when compared to APLA− patients. The results indicate that brain abnormalities can be detected in PAPLS patients with non-conventional MRI. MRI reveals more profound injury in patients with MS versus PAPLS. APLA mediates heterogeneous cerebral pathology that remains to be further investigated.

Keywords

Multiple sclerosis Primary antiphospholipid antibody syndrome Antiphospholipid antibodies Gray matter atrophy Magnetization transfer imaging 

References

  1. 1.
    Abo SM, DeBari VA (2007) Laboratory evaluation of the antiphospholipid syndrome. Ann Clin Lab Sci 37:3–14PubMedGoogle Scholar
  2. 2.
    Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11:805–821CrossRefPubMedGoogle Scholar
  3. 3.
    Atsumi T, Khamashta M, Haworth R, Brooks G, Amengual O, Ichikawa K, Koike T, Hughes GRV (1998) Arterial disease and thrombosis in the antiphospholipid syndrome: a pathogenic role for endothelin 1. Arthritis Rheum 41:800–807CrossRefPubMedGoogle Scholar
  4. 4.
    Benedict RH, Bruce J, Dwyer MG, Weinstock-Guttman B, Tjoa C, Tavazzi E, Munschauer FE, Zivadinov R (2007) Diffusion-weighted imaging predicts cognitive impairment in multiple sclerosis. Mult Scler 13:722–730CrossRefPubMedGoogle Scholar
  5. 5.
    Bidot CJ, Horstman LL, Jy W, Jimenez JJ, Bidot C Jr, Ahn YS, Alexander JS, Gonzalez-Toledo E, Kelley RE, Minagar A (2007) Clinical and neuroimaging correlates of antiphospholipid antibodies in multiple sclerosis: a preliminary study. BMC Neurol 7:36CrossRefPubMedGoogle Scholar
  6. 6.
    Bink A, Schmitt M, Gaa J, Mugler JP, Lanfermann H, Zanella FE (2006) Detection of lesions in multiple sclerosis by 2D FLAIR and single-slab 3D FLAIR sequences at 3.0 T: initial results. Eur Radiol 16:1104–1110CrossRefPubMedGoogle Scholar
  7. 7.
    Carone DA, Benedict RH, Dwyer MG, Cookfair DL, Srinivasaraghavan B, Tjoa CW, Zivadinov R (2006) Semi-automatic brain region extraction (SABRE) reveals superior cortical and deep gray matter atrophy in MS. Neuroimage 29:505–514CrossRefPubMedGoogle Scholar
  8. 8.
    Cuadrado MJ, Khamashta MA (2000) The anti-phospholipid antibody syndrome (Hughes syndrome): therapeutic aspects. Baillieres Best Pract Res Clin Rheumatol 14:151–163CrossRefPubMedGoogle Scholar
  9. 9.
    Dutta R, Trapp BD (2007) Pathogenesis of axonal and neuronal damage in multiple sclerosis. Neurology 68:S22–S31 discussion S43-54CrossRefPubMedGoogle Scholar
  10. 10.
    Garg N, Zivadinov R, Ramanathan M, Vasiliu I, Locke J, Watts K, Lema J, Rajeswary J, Munschauer FE, Ambrus J Jr, Weinstock-Guttman B (2007) Clinical and MRI correlates of autoreactive antibodies in multiple sclerosis patients. J Neuroimmunol 187:159–165CrossRefPubMedGoogle Scholar
  11. 11.
    Geurts JJ, Pouwels PJ, Uitdehaag BM, Polman CH, Barkhof F, Castelijns JA (2005) Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging. Radiology 236:254–260CrossRefPubMedGoogle Scholar
  12. 12.
    Ghafourifar P, Mousavizadeh K, Parihar MS, Nazarewicz RR, Parihar A, Zenebe WJ (2008) Mitochondria in multiple sclerosis. Front Biosci 13:3116–3126CrossRefPubMedGoogle Scholar
  13. 13.
    Grunewald T, Burmester GR, Schuler-Maue W, Hiepe F, Buttgereit F (1999) Anti-phospholipid antibodies and CD5+ B cells in HIV infection. Clin Exp Immunol 115:464–471CrossRefPubMedGoogle Scholar
  14. 14.
    Hachulla E, Michon-Pasturel U, Leys D, Pruvo JP, Queyrel V, Masy E, Arvieux J, Caron C, Brevet-Coupe F, Hatron PY, Devulder B (1998) Cerebral magnetic resonance imaging in patients with or without antiphospholipid antibodies. Lupus 7:124–131CrossRefPubMedGoogle Scholar
  15. 15.
    IJ JW, Conti-Kelly AM, Greco P, Abedi M, Amos M, Provenzale JM, Greco TP (1999) Anti-phospholipid antibodies in patients with multiple sclerosis and MS-like illnesses: MS or APS? Lupus 8:109–115CrossRefGoogle Scholar
  16. 16.
    Kalman B (2006) Role of mitochondria in multiple sclerosis. Curr Neurol Neurosci Rep 6:244–252CrossRefPubMedGoogle Scholar
  17. 17.
    Karussis D, Leker RR, Ashkenazi A, Abramsky O (1998) A subgroup of multiple sclerosis patients with anticardiolipin antibodies and unusual clinical manifestations: do they represent a new nosological entity? Ann Neurol 44:629–634CrossRefPubMedGoogle Scholar
  18. 18.
    Kim JH, Choi CG, Choi SJ, Lee HK, Suh DC (2000) Primary antiphospholipid antibody syndrome: neuroradiologic findings in 11 patients. Korean J Radiol 1:5–10CrossRefPubMedGoogle Scholar
  19. 19.
    Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452PubMedGoogle Scholar
  20. 20.
    Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology 46:907–911PubMedGoogle Scholar
  21. 21.
    Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R, Puopolo M, Reynolds R, Aloisi F (2007) Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130:1089–1104CrossRefPubMedGoogle Scholar
  22. 22.
    McIntyre JA, Wagenknech DR, Waxman DW (2003) Frequency and specificities of antiphospholipid antibodies (aPL) in volunteer blood donors. Immunobiology 207:59–63CrossRefPubMedGoogle Scholar
  23. 23.
    Miyakis S, Lockshin MD, Atsumi T, Branch DW, Brey RL, Cervera R, Derksen RH, DE Groot PG, Koike T, Meroni PL, Reber G, Shoenfeld Y, Tincani A, Vlachoyiannopoulos PG, Krilis SA (2006) International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost 4:295–306Google Scholar
  24. 24.
    Molad Y, Sidi Y, Gornish M, Lerner M, Pinkhas J, Weinberger A (1992) Lupus anticoagulant: correlation with magnetic resonance imaging of brain lesions. J Rheumatol 19:556–561PubMedGoogle Scholar
  25. 25.
    Paran D, Chapman J, Korczyn AD, Elkayam O, Hilkevich O, Groozman GB, Levartovsky D, Litinsky I, Caspi D, Segev Y, Drory VE (2006) Evoked potential studies in the antiphospholipid syndrome: differential diagnosis from multiple sclerosis. Ann Rheum Dis 65:525–528CrossRefPubMedGoogle Scholar
  26. 26.
    Pierangeli SS, Chen PP, Gonzalez EB (2006) Antiphospholipid antibodies and the antiphospholipid syndrome: an update on treatment and pathogenic mechanisms. Curr Opin Hematol 13:366–375PubMedGoogle Scholar
  27. 27.
    Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, Lublin FD, Metz LM, McFarland HF, O’Connor PW, Sandberg-Wollheim M, Thompson AJ, Weinshenker BG, Wolinsky JS (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 58:840–846CrossRefPubMedGoogle Scholar
  28. 28.
    Rovaris M, Viti B, Ciboddo G, Gerevini S, Capra R, Iannucci G, Comi G, Filippi M (2000) Brain involvement in systemic immune mediated diseases: magnetic resonance and magnetisation transfer imaging study. J Neurol Neurosurg Psychiatry 68:170–177CrossRefPubMedGoogle Scholar
  29. 29.
    Sanfilipo MP, Benedict RH, Zivadinov R, Bakshi R (2004) Correction for intracranial volume in analysis of whole brain atrophy in multiple sclerosis: the proportion vs. residual method. Neuroimage 22:1732–1743CrossRefPubMedGoogle Scholar
  30. 30.
    Schmidt R, Auer-Grumbach P, Fazekas F, Offenbacher H, Kapeller P (1995) Anticardiolipin antibodies in normal subjects. Neuropsychological correlates and MRI findings. Stroke 26:749–754PubMedGoogle Scholar
  31. 31.
    Tarr T, Lakos G, Bhattoa HP, Szegedi G, Shoenfeld Y, Kiss E (2007) Primary antiphospholipid syndrome as the forerunner of systemic lupus erythematosus. Lupus 16:324–328CrossRefPubMedGoogle Scholar
  32. 32.
    Tavazzi E, Dwyer MG, Weinstock-Guttman B, Lema J, Bastianello S, Bergamaschi R, Cosi V, Benedict RH, Munschauer FE 3rd, Zivadinov R (2007) Quantitative diffusion weighted imaging measures in patients with multiple sclerosis. Neuroimage 36:746–754CrossRefPubMedGoogle Scholar
  33. 33.
    Tourbah A, Clapin A, Gout O, Fontaine B, Liblau R, Batteux F, Stievenart JL, Weill B, Lubetzki C, Lyon-Caen O (1998) Systemic autoimmune features and multiple sclerosis: a 5-year follow-up study. Arch Neurol 55:517–521CrossRefPubMedGoogle Scholar
  34. 34.
    Weinstock-Guttman B, Zivadinov R, Tamano-Blanco M, Abdelrahman N, Badgett D, Durfee J, Hussein S, Feichter J, Patrick K, Benedict R, Ramanathan M (2007) Immune cell BDNF secretion is associated with white matter volume in multiple sclerosis. J Neuroimmunol 188:167–174CrossRefPubMedGoogle Scholar
  35. 35.
    Zivadinov R, Bergsland N, Stosic M, Sharma J, Nussenbaum F, Durfee J, Hani N, Abdelrahman N, Jaisani Z, Minagar A, Hoque R, Munschauer FE 3rd, Dwyer MG (2008) Use of perfusion- and diffusion-weighted imaging in differential diagnosis of acute and chronic ischemic stroke and multiple sclerosis. Neurol Res 30:816–826CrossRefPubMedGoogle Scholar
  36. 36.
    Zivadinov R, De Masi R, Nasuelli D, Bragadin LM, Ukmar M, Pozzi-Mucelli RS, Grop A, Cazzato G, Zorzon M (2001) MRI techniques and cognitive impairment in the early phase of relapsing–remitting multiple sclerosis. Neuroradiology 43:272–278CrossRefPubMedGoogle Scholar
  37. 37.
    Zivadinov R, Weinstock-Guttman B, Benedict R, Tamano-Blanco M, Hussein S, Abdelrahman N, Durfee J, Ramanathan M (2007) Preservation of Gray Matter Volume in Multiple Sclerosis Patients with the Met Allele of the rs6265 (Val66Met) SNP of Brain Derived Neurotrophic Factor (BDNF). Hum Mol Genet 16:2659–2668CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Milena Stosic
    • 1
  • Julian Ambrus
    • 2
  • Neeta Garg
    • 3
  • Bianca Weinstock-Guttman
    • 4
  • Murali Ramanathan
    • 5
  • Bernadette Kalman
    • 6
  • Alireza Minagar
    • 7
  • Frederick E. Munschauer
    • 4
  • Timothy M. Galey
    • 1
  • Sara Hussein
    • 1
  • Rohit Bakshi
    • 8
  • Robert Zivadinov
    • 1
    • 4
  1. 1.Department of Neurology, Buffalo Neuroimaging Analysis Center, School of Medicine and Biomedical SciencesState University of New YorkBuffaloUSA
  2. 2.Department of Rheumatology and ImmunologyState University of New YorkBuffaloUSA
  3. 3.Multiple Sclerosis Center, UMass Memorial Medical CenterWorcesterUSA
  4. 4.Department of Neurology, The Jacobs Neurological InstituteUniversity at Buffalo, State University of New YorkBuffaloUSA
  5. 5.Department of Pharmaceutical SciencesState University of New YorkBuffaloUSA
  6. 6.VAMC, SUNY Upstate Medical UniversitySyracuseUSA
  7. 7.Department of NeurologyLouisiana State University Health Sciences CenterShreveportUSA
  8. 8.Departments of Neurology and RadiologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations