Journal of Neurology

, Volume 256, Issue 10, pp 1696–1704 | Cite as

Brain anomalies in maternally inherited diabetes and deafness syndrome

  • I. Fromont
  • F. Nicoli
  • R. Valéro
  • O. Felician
  • B. Lebail
  • Y. Lefur
  • J. Mancini
  • V. Paquis-Flucklinger
  • P. J. Cozzone
  • Bernard Vialettes
Original Communication


Maternally inherited diabetes and deafness (MIDD) and myoencephalopathy, lactic acidosis, stroke-like episodes (MELAS) syndromes are characterized by the same A3243G mutation of mitochondrial DNA (mtDNA). Should there be a link between these two clinical entities, one could expect to observe minor signs of MELAS in MIDD patients. To examine this issue, extensive evaluations of brain function and imaging in patients with mitochondrial diabetes and in age-matched type 1 diabetic patients were conducted and compared. MIDD patients (nine A3243G, two T14709G) and nine age-matched type 1 diabetic patients (T1D) were submitted for evaluation of cognitive functions, brain magnetic resonance (MR) imaging, and 1H-MR spectroscopy. Three MIDD patients exhibited cerebellar ataxia. The MIDD group exhibited poorer performances in sustained attention, verbal memory working, and abstract reasoning procedures, in comparison with the T1D group. MR imaging showed cerebellar atrophy in seven out of ten MIDD patients (versus 3 mild/8 in T1D controls) and basal ganglia calcifications in one MIDD patient. No evidence of (sub)acute stroke was detected. White-matter anomalies were observed in both groups (50%). 1H-MR spectroscopy revealed a significant decrease of N-acetyl aspartate only in vermis in the MIDD group, suggesting functional defect and/or neuronal loss. Lactate was detected in cerebrospinal fluid (CSF) in two MIDD and one T1D patient. Typical manifestations of MELAS are rare in MIDD syndrome, suggesting two different clinical entities. However, cerebellum involvement as assessed by imaging and 1H-MR spectroscopy is shared by both phenotypes.


Mitochondrial diabetes MIDD MELAS Brain dysfunction Cerebellar atrophy 1H-MR spectroscopy 


  1. 1.
    Maassen JA (2002) Mitochondrial diabetes: pathophysiology, clinical presentation, and genetic analysis. Am J Med Genet 115:66–70PubMedCrossRefGoogle Scholar
  2. 2.
    Matsumoto J, Saver JL, Brennan KC, Ringman JM (2005) Mitochondrial encephalomyopathy with lactic acidosis and stroke (MELAS). Rev Neurol Dis 2:30–34PubMedGoogle Scholar
  3. 3.
    Kadowaki T, Kadowaki H, Mori Y, Tobe K, Sakuta R, Suzuki Y, Tanabe Y, Sakura H, Awata T, Goto Y et al (1994) A subtype of diabetes mellitus associated with a mutation of mitochondrial DNA. N Engl J Med 330:962–968PubMedCrossRefGoogle Scholar
  4. 4.
    Guillausseau PJ, Massin P, Dubois-LaForgue D, Timsit J, Virally M, Gin H, Bertin E, Blickle JF, Bouhanick B, Cahen J, Caillat-Zucman S, Charpentier G, Chedin P, Derrien C, Ducluzeau PH, Grimaldi A, Guerci B, Kaloustian E, Murat A, Olivier F, Paques M, Paquis-Flucklinger V, Porokhov B, Samuel-Lajeunesse J, Vialettes B (2001) Maternally inherited diabetes and deafness: a multicenter study. Ann Intern Med 134:721–728PubMedGoogle Scholar
  5. 5.
    Narbonne H, Perucca-Lostanlen D, Desnuelle C, Vialettes B, Saunieres A, Paquis-Flucklinger V (2001) Searching for A3243G mitochondrial DNA mutation in buccal mucosa in order to improve the screening of patients with mitochondrial diabetes. Eur J Endocrinol 145:541–542PubMedCrossRefGoogle Scholar
  6. 6.
    Bech P, Kastrup M, Rafaelsen JO (1989) Echelles d’évaluation des états d’anxiété, de depression, de manie, de schizophrénie. Masson, ParisGoogle Scholar
  7. 7.
    Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198PubMedCrossRefGoogle Scholar
  8. 8.
    Lawton MP, Brody EM (1969) Assessement of older people: self-maintaining and instrumental activities of daily living. Gerontologist 9:179–186PubMedGoogle Scholar
  9. 9.
    Grober E, Buschke H, Crystal H, Bang S, Dresner R (1988) Screening for dementia by memory testing. Neurology 38:900–903PubMedGoogle Scholar
  10. 10.
    Rey de Morsier A (1960) Test pour l’examen de l’apraxie de construction. Rev Neurol (Paris) 102:653–656Google Scholar
  11. 11.
    Wechsler memory test scale-revised (1987) Psychological Corporation, San AntonioGoogle Scholar
  12. 12.
    Wechsler DA (1989) Echelle d’intelligence de Wechsler pour adultes forme révisée WAIS-R. Les Editions du Centre de Psychologie appliquée, ParisGoogle Scholar
  13. 13.
    Tombaugh TN (2004) Trail making test A and B: normative data stratified by age and education. Arch Clin Neuropsychol 19:203–214PubMedCrossRefGoogle Scholar
  14. 14.
    Raven J (2000) The Raven’s progressive matrices: change and stability over culture and time. Cognit Psychol 4:1–48CrossRefGoogle Scholar
  15. 15.
    Cardebat D, Doyon B, Puel M, Goulet P, Joanette Y (1990) Formal and semantic lexical evocation in normal subjects. Performance and dynamics of production as a function of sex, age and educational level. Acta Neurol Belg 90:207–217PubMedGoogle Scholar
  16. 16.
    Dubois B, Slachevsky A, Litvan I, Pillon B (2000) The FAB: a frontal assessment battery at bedside. Neurology 55:1621–1626PubMedGoogle Scholar
  17. 17.
    Deloche G, Hannequin D, Dordain M, Metz-Lutz MN, Kremin H, Tessier C, Vendrell J, Cardebat D, Perrier D, Quint S, Pichard B (1997) Diversity of patterns of improvement in confrontation naming rehabilitation: some tentative hypotheses. J Commun Disord 30:11–21 (quiz 21-2)PubMedCrossRefGoogle Scholar
  18. 18.
    Galanaud D, Le Fur Y, Nicoli F, Denis B, Confort-Gouny S, Ranjeva JP, Viout P, Pelletier J, Cozzone PJ (2001) Regional metabolite levels of the normal posterior fossa studied by proton chemical shift imaging. MAGMA 13:127–133PubMedCrossRefGoogle Scholar
  19. 19.
    Nicoli F, Le Fur Y, Denis B, Ranjeva JP, Confort-Gouny S, Cozzone PJ (2003) The metabolic counterpart of decreased apparent diffusion coefficient during hyperacute ischemic stroke. A brain proton MR spectroscopic imaging study. Stroke 34:82–87CrossRefGoogle Scholar
  20. 20.
    Confort-Gouny S, Vion-Dury J, Nicoli F, Dano P, Donnet A, Grazziani N, Gastaut JL, Grisoli F, Cozzone PJ (1993) A multiparametric data analysis showing the potential of localized proton MR spectroscopy in the brain in the metabolic characterization of neurological diseases. J Neurol Sci 118:123–133PubMedCrossRefGoogle Scholar
  21. 21.
    Galanaud D, Chinot O, Nicoli F, Confort-Gouny S, Le Fur Y, Barrie-Attarian M, Ranjeva JP, Fuentes S, Viout P, Figarella-Branger D, Cozzone PJ (2003) Proton MR spectroscopy differentiates gliomatosis cerebri from low grade glioma. J Neurosurg 98:269–276PubMedCrossRefGoogle Scholar
  22. 22.
    Galanaud D, Nicoli F, Chinot O, Confort-Gouny S, Figarella-Branger D, Roche P, Fuentès S, Le Fur Y, Ranjeva JP, Cozzone PJ (2006) Noninvasive diagnostic assessment of brain tumors using combined in vivo MR imaging and spectroscopy. Magn Reson Med 55:1236–1245PubMedCrossRefGoogle Scholar
  23. 23.
    Ferguson SC, Blane A, Wardlaw J, Frier BM, Perros P, McCrimmon RJ, Deary IJ (2005) Influence of an early-onset age of type 1 diabetes on cerebral structure and cognitive function. Diabetes Care 28:1431–1437PubMedCrossRefGoogle Scholar
  24. 24.
    Suzuki Y, Hata T, Miyaoka H, Atsumi Y, Kadowaki H, Taniyama M, Kadowaki T, Odawara M, Tanaka Y, Asahina T, Matsuoka K (1996) Diabetes with the 3243 mitochondrial tRNALeu(UUR) mutation. Characteristic neuroimaging findings. Diabetes Care 19:739–743PubMedCrossRefGoogle Scholar
  25. 25.
    Wilichowski E, Pouwels PJ, Frahm J, Hanefeld F (1999) Quantitative proton magnetic resonance spectroscopy of cerebral metabolic disturbances in patients with MELAS. Neuropediatrics 30:256–263PubMedCrossRefGoogle Scholar
  26. 26.
    Abe K (2004) Cerebral lactic acidosis correlates with neurological impairment in MELAS. Neurology 63:2458PubMedGoogle Scholar
  27. 27.
    Kaufmann P, Shungu DC, Sano MC, Jhung S, Engelstad K, Mitsis E, Mao X, Shanske S, Hirano M, DiMauro S, De Vivo DC (2004) Cerebral lactic acidosis correlates with neurological impairment in MELAS. Neurology 62:1297–1302PubMedGoogle Scholar
  28. 28.
    Kizu O, Yamada K, Nishimura T (2001) Proton chemical shift imaging in normal pressure hydrocephalus. Am J Neuroradiol 22:1659–1664PubMedGoogle Scholar
  29. 29.
    Lien LM, Lee HC, Wang KL, Chiu JC, Chiu HC, Wei YH (2001) Involvement of nervous system in maternally inherited diabetes and deafness (MIDD) with the A3243G mutation of mitochondrial DNA. Acta Neurol Scand 103:159–165PubMedCrossRefGoogle Scholar
  30. 30.
    Schapira AH (2006) Mitochondrial disease. Lancet 368:70–82PubMedCrossRefGoogle Scholar
  31. 31.
    Brands AM, Biessels GJ, de Haan EH, Kappelle LJ, Kessels RP (2005) The effects of type 1 diabetes on cognitive performance: a meta-analysis. Diabetes Care 28:726–735PubMedCrossRefGoogle Scholar
  32. 32.
    Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study Research Group, Jacobson AM, Musen G, Ryan CM, Silvers N, Cleary P, Waberski B, Burwood A, Weinger K, Bayless M, Dahms W, Harth J (2007) Long-term effect of diabetes and its treatment on cognitive function. N Engl J Med 356:1842–1852PubMedCrossRefGoogle Scholar
  33. 33.
    Brands AM, Kessels RP, Hoogma RP, Henselmans JM, van der Beek Boter JW, Kappelle LJ, de Haan EH, Biessels GJ (2006) Cognitive performance, psychological well-being, and brain magnetic resonance imaging in older patients with type 1 diabetes. Diabetes 55:1800–1806PubMedCrossRefGoogle Scholar
  34. 34.
    Wessels AM, Rombouts SA, Remijnse PL, Boom Y, Scheltens P, Barkhof F, Heine RJ, Snoek FJ (2007) Cognitive performance in type 1 diabetes patients is associated with cerebral white matter volume. Diabetologia 50:1763–1769PubMedCrossRefGoogle Scholar
  35. 35.
    Kobayashi Z, Tsunemi T, Miake H, Tanaka S, Watabiki S, Morokuma Y (2005) A mother and a child with maternally inherited diabetes and deafness (MIDD) showing atrophy of the cerebrum, cerebellum and brainstem on magnetic resonance imaging (MRI). Intern Med 44:328–331PubMedCrossRefGoogle Scholar
  36. 36.
    Petruzzella V, Zoccolella S, Amati A, Torraco A, Lamberti P, Carnicella F, Serlenga L, Papa S (2004) Cerebellar ataxia as atypical manifestation of the 3243A > G MELAS mutation. Clin Genet 65:64–65PubMedCrossRefGoogle Scholar
  37. 37.
    Bates TE, Strangward M, Keelan J, Davey GP, Munro PM, Clark JB (1996) Inhibition of N-acetylaspartate production: implications for 1H MRS studies in vivo. NeuroReport 7:1397–1400PubMedCrossRefGoogle Scholar
  38. 38.
    Mathews PM, Andermann F, Silver K, Karpati G, Arnold DL (1993) Proton MR spectroscopic characterization of differences in regional brain metabolic abnormalities in mitochondrial encephalomyopathies. Neurology 43:2484–2490PubMedGoogle Scholar
  39. 39.
    Sparaco M, Simonati A, Cavallaro T, Bartolomei L, Grauso M, Piscioli F, Morelli L, Rizzuto N (2003) MELAS: clinical phenotype and morphological brain abnormalities. Acta Neuropathol (Berl) 106:202–212CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • I. Fromont
    • 1
  • F. Nicoli
    • 2
    • 3
  • R. Valéro
    • 1
  • O. Felician
    • 4
  • B. Lebail
    • 4
  • Y. Lefur
    • 2
  • J. Mancini
    • 5
  • V. Paquis-Flucklinger
    • 6
  • P. J. Cozzone
    • 2
  • Bernard Vialettes
    • 1
    • 7
  1. 1.Départment d’Endocrinologie-Nutrition, Hôpital La TimoneUniversité de la MéditerranéeMarseilleFrance
  2. 2.Faculté de Médecine la Timone, Unité Mixte de Recherche (UMR), Centre de Résonance Magnétique Biologique et MédicaleUniversité de la Méditerranée, CNRS 6612MarseilleFrance
  3. 3.Unité Neurovasculaire, Hôpital La TimoneUniversité de la MéditerranéeMarseilleFrance
  4. 4.Départment de Neurologie et Neuropsychologie, Hôpital La TimoneUniversité de la Méditerranée, UMRS 751MarseilleFrance
  5. 5.Départment d’Information médicale et santé publique, Hôpital La TimoneUniversité de la MéditerranéeMarseilleFrance
  6. 6.Department of Medical Genetics, Hôpital L’Archet 2Université de NiceNiceFrance
  7. 7.Service de NutritionCHU TimoneMarseilleFrance

Personalised recommendations