Journal of Neurology

, Volume 256, Issue 10, pp 1643–1648 | Cite as

Serum uric acid and risk of multiple sclerosis

  • Jennifer Massa
  • E. O’Reilly
  • K. L. Munger
  • G. N. DeLorenze
  • A. Ascherio
Original Communication

Abstract

Because of evidence implicating oxidative stress in multiple sclerosis pathogenesis, it has been postulated that high levels of urate, a potent antioxidant, could reduce risk or favorably influence disease progression. We conducted a prospective study to determine whether serum urate levels contribute to prediction of multiple sclerosis risk. Analyses included 31 cases with blood collected a median of 1.9 years before multiple sclerosis onset from the Nurses’ Health Study and Nurses’ Health Study II cohorts, and 42 cases with collection a median of 14.5 years before onset from the Kaiser Permanente Northern California health plan cohort. Relative risks were estimated by unconditional logistic regression, including 26 controls in the Nurses’ cohorts and 130 controls in the Kaiser cohort. In analyses including only cases in the Nurses’ cohorts where blood was collected shortly before onset, there was a trend toward a lower risk of multiple sclerosis among individuals with higher serum urate, but the association was not significant (multivariable relative risk 0.52, 95% CI 0.22, 1.20, p value 0.13). In contrast, there was no evidence of a decline in risk with increasing serum urate in the Kaiser cohort where there was a longer period of time between blood collection and onset (multivariable relative risk 1.36, 95% CI 0.87, 2.14, p value 0.18). The results of this study suggest that serum urate is not a strong predictor of MS risk. This lack of association is consistent with the interpretation that the lower urate levels among multiple sclerosis cases are a consequence rather than a cause of the disease.

Keywords

Multiple sclerosis Uric acid Urate Etiology Prospective 

References

  1. 1.
    Ascherio A, Munger KL, Lennette ET, Spiegelman D, Hernan MA, Olek MJ, Hankinson SE, Hunter DJ (2001) Epstein-barr virus antibodies and risk of multiple sclerosis: a prospective study. JAMA 286:3083–3088. doi:10.1001/jama.286.24.3083 PubMedCrossRefGoogle Scholar
  2. 2.
    DeLorenze GN, Munger KL, Lennette ET, Orentreich N, Vogelman JH, Ascherio A (2006) Epstein-barr virus and multiple sclerosis: evidence of association from a prospective study with long-term follow-up. Arch Neurol 63:839–844. doi:10.1001/archneur.63.6.noc50328 PubMedCrossRefGoogle Scholar
  3. 3.
    Friedman GD, Siegelaub AB (1980) Changes after quitting cigarette smoking. Circulation 61:716–723PubMedGoogle Scholar
  4. 4.
    Gilgun-Sherki Y, Melamed E, Offen D (2004) The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol 251:261–268. doi:10.1007/s00415-004-0348-9 PubMedCrossRefGoogle Scholar
  5. 5.
    Hernan MA, Olek MJ, Ascherio A (1999) Geographic variation of MS incidence in two prospective studies of US women. Neurology 53:1711–1718PubMedGoogle Scholar
  6. 6.
    Hooper DC, Bagasra O, Marini JC, Zborek A, Ohnishi ST, Kean R, Champion JM, Sarker AB, Bobroski L, Farber JL, Akaike T, Maeda H, Koprowski H (1997) Prevention of experimental allergic encephalomyelitis by targeting nitric oxide and peroxynitrite: implications for the treatment of multiple sclerosis. Proc Natl Acad Sci USA 94:2528–2533. doi:10.1073/pnas.94.6.2528 PubMedCrossRefGoogle Scholar
  7. 7.
    Hooper DC, Spitsin S, Kean RB, Champion JM, Dickson GM, Chaudhry I, Koprowski H (1998) Uric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci USA 95:675–680. doi:10.1073/pnas.95.2.675 PubMedCrossRefGoogle Scholar
  8. 8.
    Kageyama N (1971) A direct colorimetric determination of uric acid in serum and urine with uricase–catalase system. Clin Chim Acta 31:421–426. doi:10.1016/0009-8981(71)90413-X PubMedCrossRefGoogle Scholar
  9. 9.
    Knapp CM, Constantinescu CS, Tan JH, McLean R, Cherryman GR, Gottlob I (2004) Serum uric acid levels in optic neuritis. Mult Scler 10:278–280. doi:10.1191/1352458504ms1042oa PubMedCrossRefGoogle Scholar
  10. 10.
    Koch M, De Keyser J (2006) Uric acid in multiple sclerosis. Neurol Res 28:316–319. doi:10.1179/016164106X98215 PubMedCrossRefGoogle Scholar
  11. 11.
    Rentzos M, Nikolaou C, Anagnostouli M, Rombos A, Tsakanikas K, Economou M, Dimitrakopoulos A, Karouli M, Vassilopoulos D (2006) Serum uric acid and multiple sclerosis. Clin Neurol Neurosurg 108:527–531. doi:10.1016/j.clineuro.2005.08.004 PubMedCrossRefGoogle Scholar
  12. 12.
    Saag KG, Choi H (2006) Epidemiology, risk factors, and lifestyle modifications for gout. Arthritis Res Ther 8(suppl 1):S2. doi:10.1186/ar1907 PubMedCrossRefGoogle Scholar
  13. 13.
    Spitsin S, Hooper DC, Leist T, Streletz LJ, Mikheeva T, Koprowskil H (2001) Inactivation of peroxynitrite in multiple sclerosis patients after oral administration of inosine may suggest possible approaches to therapy of the disease. Mult Scler 7:313–319PubMedGoogle Scholar
  14. 14.
    Spitsin SV, Scott GS, Kean RB, Mikheeva T, Hooper DC (2000) Protection of myelin basic protein immunized mice from free-radical mediated inflammatory cell invasion of the central nervous system by the natural peroxynitrite scavenger uric acid. Neurosci Lett 292:137–141. doi:10.1016/S0304-3940(00)01446-4 PubMedCrossRefGoogle Scholar
  15. 15.
    Toncev G, Milicic B, Toncev S, Samardzic G (2002) Serum uric acid levels in multiple sclerosis patients correlate with activity of disease and blood–brain barrier dysfunction. Eur J Neurol 9:221–226. doi:10.1046/j.1468-1331.2002.00384.x PubMedCrossRefGoogle Scholar
  16. 16.
    Vaughan JH, Riise T, Rhodes GH, Nguyen MD, Barrett-Connor E, Nyland H (1996) An epstein barr virus-related cross reactive autoimmune response in multiple sclerosis in Norway. J Neuroimmunol 69:95–102. doi:10.1016/0165-5728(96)00069-0 PubMedCrossRefGoogle Scholar
  17. 17.
    Whiteman M, Halliwell B (1996) Protection against peroxynitrite-dependent tyrosine nitration and alpha 1-antiproteinase inactivation by ascorbic acid. A comparison with other biological antioxidants. Free Radic Res 25:275–283. doi:10.3109/10715769609149052 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jennifer Massa
    • 1
  • E. O’Reilly
    • 1
  • K. L. Munger
    • 2
  • G. N. DeLorenze
    • 3
  • A. Ascherio
    • 1
    • 4
  1. 1.Departments of Epidemiology and NutritionHarvard School of Public HealthBostonUSA
  2. 2.Department of NutritionHarvard School of Public HealthBostonUSA
  3. 3.Kaiser Permanente Division of ResearchOaklandUSA
  4. 4.Channing LaboratoryBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations