Journal of Neurology

, Volume 256, Issue 8, pp 1228–1235 | Cite as

Development of ALS-like disease in SOD-1 mice deficient of B lymphocytes

  • Shulamit Naor
  • Zohar Keren
  • Tomer Bronshtein
  • Efrat Goren
  • Marcelle Machluf
  • Doron Melamed
Original Communication


Several recent studies proposed a role for innate immunity and inflammation in the pathogenesis of amyotrophic lateral sclerosis (ALS). However, possible links, if any, between disease and adaptive immunity are poorly understood. The present study probed for the role of B cells in ALS disease using the G93A-SOD-1 transgenic mouse model. In agreement with other studies, we show here that autoantibodies are detectable in SOD-1 mice. However, SOD-1 B cells did not express any altered phenotype and exhibited indistinguishable responsiveness to immunogenic stimuli relative to wild-type B cells. This was obtained for B cells isolated before, during and after the onset of ALS-like disease. Finally, to obtain an in vivo conclusion, we generated SOD-1 mice that are deficient of B cells, by crossing SOD-1 mice with Igμ-deficient mice (μMT), where B cell development is blocked at the proB stage. The meteoric assays performed on a rota-rod clearly showed the development of ALS-like disease in SOD-1 mice that are deficient of B cells not differently than in control SOD-1 mice. Our results propose that B lymphocytes do not have a major role in the pathogenesis of ALS-like disease in SOD-1 mice.


Amyotrophic lateral sclerosis (ALS) B lymphocytes Antibodies Autoimmunity 



This work was supported by grants provided by IsrA.L.S.—The Association for ALS Research in Israel, and by the Elias Fund for Medical Research.


  1. 1.
    Alexianu ME, Kozovska M, Appel SH (2001) Immune reactivity in a mouse model of familial ALS correlates with disease progression. Neurology 57:1282–1289PubMedGoogle Scholar
  2. 2.
    Andersen P (2000) Genetic factors in the early diagnosis of ALS. Amyotroph Lateral Scler Other Mot Neuron Disord 1:S13–S42. doi: 10.1080/14660820052415899 CrossRefGoogle Scholar
  3. 3.
    Andreassen OAFR, Klivenyi P, Klein AM, Shinobu LA, Epstein CJ, Beal MF (2000) Partial deficiency of manganese superoxide dismutase exacerbates a transgenic mouse model of amyotrophic lateral sclerosis. Ann Neurol 47:447–455. doi: 10.1002/1531-8249(200004)47:4<447::AID-ANA7>3.0.CO;2-R PubMedCrossRefGoogle Scholar
  4. 4.
    Appel SH, Smith RG, Engelhardt JI, Stefani E (1993) Evidence for autoimmunity in amyotrophic lateral sclerosis. J Neurol Sci 118:169–174. doi: 10.1016/0022-510X(93)90106-9 PubMedCrossRefGoogle Scholar
  5. 5.
    Banerjee R, Mosley RL, Reynolds AD, Dhar A, Jackson-Lewis V, Gordon PH, Przedborski S, Gendelman HE (2008) Adaptive immune neuroprotection in G93A-SOD1 amyotrophic lateral sclerosis mice. PLoS One 3:e2740. doi: 10.1371/journal.pone.0002740
  6. 6.
    Boillee S, Vande Velde C, Cleveland DW (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52:39–59. doi: 10.1016/j.neuron.2006.09.018 PubMedCrossRefGoogle Scholar
  7. 7.
    Cozzolino M, Ferri A, Carri MT (2008) Amyotrophic lateral sclerosis: from current developments in the laboratory to clinical implications. Antioxid Redox Signal 10:405–443. doi: 10.1089/ars.2007.1760 PubMedCrossRefGoogle Scholar
  8. 8.
    Dittel BN, Urbania TH, Janeway CA Jr (2000) Relapsing and remitting experimental autoimmune encephalomyelitis in B cell deficient mice. J Autoimmun 14:311–318. doi: 10.1006/jaut.2000.0371 PubMedCrossRefGoogle Scholar
  9. 9.
    Durham HD, Roy J, Dong L, Figlewicz DA (1997) Aggregation of mutant Cu/Zn superoxide dismutase proteins in a culture model of ALS. J Neuropathol Exp Neurol 56:523–530. doi: 10.1097/00005072-199705000-00008 PubMedCrossRefGoogle Scholar
  10. 10.
    Edwards JC, Cambridge G (2006) B cell targeting in rheumatoid arthritis and other autoimmune diseases. Nat Rev Immunol 6:394–403. doi: 10.1038/nri1838 PubMedCrossRefGoogle Scholar
  11. 11.
    Engelhardt JI, Appel SH (1990) IgG reactivity in the spinal cord and motor cortex in amyotrophic lateral sclerosis. Arch Neurol 47:1210–1216PubMedGoogle Scholar
  12. 12.
    Folzenlogen D, Hofer MF, Leung DY, Freed JH, Newell MK (1997) Analysis of CD80 and CD86 expression on peripheral blood B lymphocytes reveals increased expression of CD86 in lupus patients. Clin Immunol Immunopathol 83:199–204. doi: 10.1006/clin.1997.4353 PubMedCrossRefGoogle Scholar
  13. 13.
    Fray AE, Ince PG, Banner SJ, Milton ID, Usher PA, Cookson MR, Shaw PJ (1998) The expression of the glial glutamate transporter protein EAAT2 in motor neuron disease: an immunohistochemical study. Eur J Neurosci 10:2481–2489. doi: 10.1046/j.1460-9568.1998.00273.x PubMedCrossRefGoogle Scholar
  14. 14.
    Gaudette MHM, Siddique T (2000) Current status of SOD1 mutations in familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Mot Neuron Disord 1:83–89. doi: 10.1080/14660820050515377 CrossRefGoogle Scholar
  15. 15.
    Hafler DA, Slavik JM, Anderson DE, O’Connor KC, De Jager P, Baecher-Allan C (2005) Multiple sclerosis. Immunol Rev 204:208–231. doi: 10.1111/j.0105-2896.2005.00240.x PubMedCrossRefGoogle Scholar
  16. 16.
    Harris DP, Haynes L, Sayles PC, Duso DK, Eaton SM, Lepak NM, Johnson LL, Swain SL, Lund FE (2000) Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat Immunol 1:475–482. doi: 10.1038/82717 PubMedCrossRefGoogle Scholar
  17. 17.
    Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, Bar-Or A, Panzara M, Sarkar N, Agarwal S, Langer-Gould A, Smith CH (2008) B cell depletion with rituximab in relapsing–remitting multiple sclerosis. N Engl J Med 358:676–688. doi: 10.1056/NEJMoa0706383 PubMedCrossRefGoogle Scholar
  18. 18.
    Hayashi S, Sakurai A, Amari M, Okamoto K (2001) Pathological study of the diffuse myelin pallor in the anterolateral columns of the spinal cord in amyotrophic lateral sclerosis. J Neurol Sci 188:3–7. doi: 10.1016/S0022-510X(01)00531-7 PubMedCrossRefGoogle Scholar
  19. 19.
    Kang J, Rivest S (2007) MyD88-deficient bone marrow cells accelerate onset and reduce survival in a mouse model of amyotrophic lateral sclerosis. J Cell Biol 179:1219–1230. doi: 10.1083/jcb.200705046 PubMedCrossRefGoogle Scholar
  20. 20.
    Keren Z, Diamant E, Ostrovsky O, Bengal E, Melamed D (2004) Modification of ligand-independent B cell receptor tonic signals activates receptor editing in immature B lymphocytes. J Biol Chem 279:13418–13424. doi: 10.1074/jbc.M311970200 PubMedCrossRefGoogle Scholar
  21. 21.
    Kitamura D, Roes J, Kuhn R, Rajewsky K (1991) A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 350:423–426. doi: 10.1038/350423a0 PubMedCrossRefGoogle Scholar
  22. 22.
    Lobsiger CS, Cleveland DW (2007) Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. Nat Neurosci 10:1355–1360. doi: 10.1038/nn1988 PubMedCrossRefGoogle Scholar
  23. 23.
    McFarland HF (2008) The B cell–old player, new position on the team. N Engl J Med 358:664–665. doi: 10.1056/NEJMp0708143 PubMedCrossRefGoogle Scholar
  24. 24.
    McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38:1285–1291PubMedGoogle Scholar
  25. 25.
    McGeer PL, McGeer EG (2002) Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve 26:459–470. doi: 10.1002/mus.10191 PubMedCrossRefGoogle Scholar
  26. 26.
    Minagar A, Shapshak P, Fujimura R, Ownby R, Heyes M, Eisdorfer C (2002) The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci 202:13–23. doi: 10.1016/S0022-510X(02)00207-1 PubMedCrossRefGoogle Scholar
  27. 27.
    Mulder DW, Kurland LT, Offord KP, Beard CM (1986) Familial adult motor neuron disease: amyotrophic lateral sclerosis. Neurology 36:511–517PubMedGoogle Scholar
  28. 28.
    Niebroj-Dobosz I, Dziewulska D, Janik P (2006) Auto-antibodies against proteins of spinal cord cells in cerebrospinal fluid of patients with amyotrophic lateral sclerosis (ALS). Folia Neuropathol 44:191–196PubMedGoogle Scholar
  29. 29.
    Niebroj-Dobosz I, Jamrozik Z, Janik P, Hausmanowa-Petrusewicz I, Kwiecinski H (1999) Anti-neural antibodies in serum and cerebrospinal fluid of amyotrophic lateral sclerosis (ALS) patients. Acta Neurol Scand 100:238–243. doi: 10.1111/j.1600-0404.1999.tb00717.x PubMedCrossRefGoogle Scholar
  30. 30.
    Niebroj-Dobosz I, Janik P, Kwiecinski H (2004) Serum IgM anti-GM1 ganglioside antibodies in lower motor neuron syndromes. Eur J Neurol 11:13–16. doi: 10.1046/j.1351-5101.2003.00697.x PubMedCrossRefGoogle Scholar
  31. 31.
    Offen D, Halevi S, Orion D, Mosberg R, Stern-Goldberg H, Melamed E, Atlas D (1998) Antibodies from ALS patients inhibit dopamine release mediated by L-type calcium channels. Neurology 51:1100–1103PubMedGoogle Scholar
  32. 32.
    Pugh-Bernard AE, Cambier JC (2006) B cell receptor signaling in human systemic lupus erythematosus. Curr Opin Rheumatol 18:451–455. doi: 10.1097/01.bor.0000240353.99808.5f PubMedCrossRefGoogle Scholar
  33. 33.
    Ringheim GE, Conant K (2004) Neurodegenerative disease and the neuroimmune axis (Alzheimer’s and Parkinson’s disease, and viral infections). J Neuroimmunol 147:43–49. doi: 10.1016/j.jneuroim.2003.10.013 PubMedCrossRefGoogle Scholar
  34. 34.
    Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62. doi: 10.1038/362059a0 PubMedCrossRefGoogle Scholar
  35. 35.
    Rowland LP, Shneider NA (2001) Amyotrophic lateral sclerosis. N Engl J Med 344:1688–1700. doi: 10.1056/NEJM200105313442207 PubMedCrossRefGoogle Scholar
  36. 36.
    Schiffer D, Cordera S, Cavalla P, Migheli A (1996) Reactive astrogliosis of the spinal cord in amyotrophic lateral sclerosis. J Neurol Sci 139:27–33PubMedCrossRefGoogle Scholar
  37. 37.
    Seagal J, Edry E, Keren Z, Leider N, Benny O, Machluf M, Melamed D (2003) A fail-safe mechanism for negative selection of isotype-switched B Cell precursors is regulated by the Fas/FasL pathway. J Exp Med 198:1609–1619. doi: 10.1084/jem.20030357 PubMedCrossRefGoogle Scholar
  38. 38.
    Seagal J, Edry E, Naftali H, Melamed D (2004) Generation and selection of an IgG-driven autoimmune repertoire during B lymphopoiesis in Igmicro-deficient/lpr mice. Int Immunol 16:905–913. doi: 10.1093/intimm/dxh092 PubMedCrossRefGoogle Scholar
  39. 39.
    Sengun IS, Appel SH (2003) Serum anti-Fas antibody levels in amyotrophic lateral sclerosis. J Neuroimmunol 142:137–140. doi: 10.1016/S0165-5728(03)00263-7 PubMedCrossRefGoogle Scholar
  40. 40.
    Smits HA, Boven LA, Pereira CF, Verhoef J, Nottet HSLM (2000) Role of macrophage activation in the pathogenesis of Alzheimer’s disease and human immunodeficiency virus type 1-associated dementia. Eur J Clin Invest 30:526–535. doi: 10.1046/j.1365-2362.2000.00661.x PubMedCrossRefGoogle Scholar
  41. 41.
    Staines DR (2008) Are multiple sclerosis and amyotrophic lateral sclerosis autoimmune disorders of endogenous vasoactive neuropeptides? Med Hypotheses 70:413–418. doi: 10.1016/j.mehy.2007.04.038 PubMedCrossRefGoogle Scholar
  42. 42.
    Troost D, Van den Oord JJ, De Jong JMBV, Swaab DF (1989) Lymphocytic infiltration in the spinal cord of patients with amyotrophic lateral sclerosis. Clin Neuropathol 8:289–294PubMedGoogle Scholar
  43. 43.
    Valdmanis PN, Rouleau GA (2008) Genetics of familial amyotrophic lateral sclerosis. Neurology 70:144–152. doi: 10.1212/01.wnl.0000296811.19811.db PubMedCrossRefGoogle Scholar
  44. 44.
    Wang Y, Krieg AM (2003) Synergy between CpG- or non-CpG DNA and specific antigen for B cell activation. Int Immunol 15:223–231. doi: 10.1093/intimm/dxg020 PubMedCrossRefGoogle Scholar
  45. 45.
    Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, Sisodia SS, Cleveland DW, Price DL (1995) An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14:1105–1116. doi: 10.1016/0896-6273(95)90259-7 PubMedCrossRefGoogle Scholar
  46. 46.
    Woodruff TM, Costantini KJ, Taylor SM, Noakes PG (2008) Role of complement in motor neuron disease: animal models and therapeutic potential of complement inhibitors. Adv Exp Med Biol 632:143–158PubMedGoogle Scholar
  47. 47.
    Youinou P (2007) B cell conducts the lymphocyte orchestra. J Autoimmun 28:143–151. doi: 10.1016/j.jaut.2007.02.011 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Shulamit Naor
    • 1
  • Zohar Keren
    • 1
  • Tomer Bronshtein
    • 2
  • Efrat Goren
    • 2
  • Marcelle Machluf
    • 2
  • Doron Melamed
    • 1
    • 3
  1. 1.Department of Immunology, Bruce Rappaport Faculty of MedicineTechnion-Israel Institute of TechnologyHaifaIsrael
  2. 2.Faculty of Food Engineering and BiotechnologyTechnion-Israel Institute of TechnologyHaifaIsrael
  3. 3.Bruce Rappaport Faculty of Medicine and Rappaport Family Institute for Research in the Medical SciencesTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations