Advertisement

Journal of Neurology

, 256:916 | Cite as

In vivo mapping of incremental cortical atrophy from incipient to overt Alzheimer’s disease

  • Giovanni B. Frisoni
  • Annapaola Prestia
  • Paul E. Rasser
  • Matteo Bonetti
  • Paul M. Thompson
Original Communication

Abstract

Progressive brain atrophy is believed to be the Alzheimer’s disease (AD) marker with the greatest evidence for validity. Mapping the topography of cortical atrophy throughout the stages of severity may allow the neural networks affected to be identified. Twenty healthy elderly persons (OH, MMSE 29.1 ± 1.0), 11 patients with incipient AD (iAD, 26.5 ± 2.0), 15 with mild AD (miAD, 23.5 ± 2.2), and 15 with moderate AD (moAD, 16.5 ± 2.0) underwent 3D magnetic resonance. Cortical pattern matching analysis was performed and maps of percent differences in gray matter distribution were computed between the following groups: iAD versus OH, miAD versus iAD, and moAD versus miAD. Compared to OH, iAD patients exhibited a mean cortical gray matter loss of 9–20% in areas encompassing the polysynaptic hippocampal pathway (posterior cingulate/retrosplenial and medial temporal cortex) and subgenual/orbitofrontal cortices, and a less widespread loss of 5–11% in other neocortical areas. Compared to iAD, miAD featured widespread mean gray matter loss of 14–19% in areas encompassing the direct hippocampal pathway (temporal pole, temporoparietal association cortex, and dorsal prefrontal cortex), sensorimotor, and visual cortex, with a less marked loss (7–9%) in the polysynaptic pathway areas. Compared to miAD, only atrophy in the primary sensorimotor cortex was still relatively marked in moAD, with a mean gray matter loss of 10–11%; the loss in other regions was generally below 10%. These findings suggest that the polysynaptic hippocampal pathway is affected in iAD, the direct pathway and sensorimotor and visual networks are affected in moAD, and the sensorimotor network is affected in moAD.

Keywords

Alzheimer’s disease Cortical pattern matching Brain atrophy Mild cognitive impairment (MCI) Volumetric MRI 

Notes

Acknowledgments

We wish to thank Francesca Sabattoli for help in the inter-rater reliability of cortical pattern matching, and Michela Pievani for continuous technical and logistic support.

Conflict of interest statement

The authors report no conflicts of interest.

Supplementary material

415_2009_5040_MOESM1_ESM.doc (818 kb)
Supplementary figures (DOC 818 kb)

References

  1. 1.
    Committee for Medicinal Products for Human Use (CHMP) (2007) Guideline on medicinal products for the treatment of Alzheimer’s disease and other dementias (draft; CPMP/EWP/553/95 Rev. 1). CHMP, LondonGoogle Scholar
  2. 2.
    Ridha BH, Barnes J, Bartlett JW, Godbolt A, Pepple T, Rossor MN, Fox NC (2006) Tracking atrophy progression in familial Alzheimer’s disease: a serial MRI study. Lancet Neurol 5:828–834PubMedCrossRefGoogle Scholar
  3. 3.
    Whitwell JL, Shiung MM, Przybelski SA, Weigand SD, Knopman DS, Boeve BF, Petersen RC, Jack CR Jr (2008) MRI patterns of atrophy associated with progression to AD in amnestic mild cognitive impairment. Neurology 70:512–520PubMedCrossRefGoogle Scholar
  4. 4.
    Thompson PM, Hayashi KM, de Zubicaray G, Janke AL, Rose SE, Semple J, Herman D, Hong MS, Dittmer SS, Doddrell DM, Toga AW (2003) Dynamics of gray matter loss in Alzheimer’s disease. J Neurosci 23:994–1005PubMedGoogle Scholar
  5. 5.
    Smith AD (2002) Imaging the progression of Alzheimer pathology through the brain. Proc Natl Acad Sci USA 99:4135–4137PubMedCrossRefGoogle Scholar
  6. 6.
    Whitwell JL, Przybelski SA, Weigand SD, Knopman DS, Boeve BF, Petersen RC, Jack CR Jr (2007) 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer’s disease. Brain 130:1777–1786PubMedCrossRefGoogle Scholar
  7. 7.
    Du AT, Schuff N, Amend D, Laakso MP, Hsu YY, Jagust WJ, Yaffe K, Kramer JH, Reed B, Norman D, Chui HC, Weiner MW (2001) Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 71:441–447PubMedCrossRefGoogle Scholar
  8. 8.
    Chételat G, Desgranges B, De La Sayette V, Viader F, Eustache F, Baron JC (2002) Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment. Neuroreport 13:1939–1943PubMedCrossRefGoogle Scholar
  9. 9.
    Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rossor M, Thal L, Winbald B (2001) Current concepts in mild cognitive impairment. Arch Neurol 58:1985–1992PubMedCrossRefGoogle Scholar
  10. 10.
    Lezak M, Howieson D, Loring DW (2004) Neuropsychological assessment, 4th edn. University Press, OxfordGoogle Scholar
  11. 11.
    Prestia A, Rossi R, Geroldi C, Galluzzi S, Ettori M, Alaimo G, Frisoni GB (2006) Validation study of the three-objects-three-places test: a screening test for Alzheimer’s disease. Exp Aging Res 32:395–410PubMedCrossRefGoogle Scholar
  12. 12.
    McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–944PubMedGoogle Scholar
  13. 13.
    Riello R, Sabattoli F, Beltramello A, Bonetti M, Bono G, Falini A, Magnani G, Minonzio G, Piovan E, Alaimo G, Ettori M, Galluzzi S, Locatelli E, Noiszewska M, Testa C, Frisoni GB (2005) Brain volumes in healthy adults aged 40 years and over: a voxel-based morphometry study. Aging Clin Exp Res 17:329–336PubMedGoogle Scholar
  14. 14.
    Thompson PM, Hayashi KM, De Zubicaray GI, Janke AL, Rose SE, Semple J, Hong MS, Herman DH, Gravano D, Doddrell DM, Toga AW (2004) Mapping hippocampal and ventricular change in Alzheimer disease. Neuroimage 22(4):1754–1766; erratum (2007) 36:1397–1398Google Scholar
  15. 15.
    Heilbrun MP, Koehler S, MacDonald P, Siemionow V, Peters W (1994) Preliminary experience using an optimized three-point transformation algorithm for spatial registration of coordinate systems: a method of noninvasive localization using frame-based stereotactic guidance systems. J Neurosurg 81:676–682PubMedCrossRefGoogle Scholar
  16. 16.
    Sowell ER, Thompson PM, Rex D, Kornsand D, Tessner KD, Jernigan TL, Toga AW (2001) Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: Inverse relationships during postadolescent brain maturation. J Neurosci 21:8819–8829PubMedGoogle Scholar
  17. 17.
    Thompson PM, Woods RP, Mega MS, Toga AW (2000) Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain. Hum Brain Mapp 9:81–92PubMedCrossRefGoogle Scholar
  18. 18.
    Shattuck DW, Leahy RM (2001) Automated graph-based analysis and correction of cortical volume topology. IEEE Trans Med Imaging 20:1167–1177PubMedCrossRefGoogle Scholar
  19. 19.
    Sowell ER, Thompson PM, Leonard CM, Welcome SE, Kan E, Toga AW (2004) Longitudinal mapping of cortical thickness and brain growth in normal children. J Neurosci 24:8223–8231PubMedCrossRefGoogle Scholar
  20. 20.
    Rasser PE, Johnston P, Lagopoulos J, Ward P, Schall U, Thienel R, Bender S, Toga A, Thompson PM, Functional MRI (2005) BOLD response to Tower of London performance of first-episode schizophrenia patients using cortical pattern matching. Neuroimage 26:941–951PubMedCrossRefGoogle Scholar
  21. 21.
    Van Essen DC (2002) Windows on the brain. The emerging role of atlases and databases in neuroscience. Curr Opin Neurobiol 12:574–579PubMedCrossRefGoogle Scholar
  22. 22.
    Duvernoy HM (1998) The human hippocampus: functional anatomy, vascularization and serial sections with MRI. Springer, New York, pp 29–30Google Scholar
  23. 23.
    Yousem DM, Williams SC, Howard RO, Andrew C, Simmons A, Allin M, Geckle RJ, Suskind D, Bullmore ET, Brammer MJ, Doty RL (1997) Functional MR imaging during odor stimulation: preliminary data. Radiology 204:833–838PubMedGoogle Scholar
  24. 24.
    Chételat G, Landeau B, Eustache F, Mézenge F, Viader F, de la Sayette V, Desgranges B, Baron JC (2005) Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study. Neuroimage 27:934–946PubMedCrossRefGoogle Scholar
  25. 25.
    Djordjevic J, Jones-Gotman M, De Sousa K, Chertkow H (2008) Olfaction in patients with mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 29:693–706PubMedCrossRefGoogle Scholar
  26. 26.
    Salat DH, Kaye JA, Janowsky JS (2001) Selective preservation and degeneration within the prefrontal cortex in aging and Alzheimer disease. Arch Neurol 58:1403–1408PubMedCrossRefGoogle Scholar
  27. 27.
    Resnick SM, Lamar M, Driscoll I (2007) Vulnerability of the orbitofrontal cortex to age-associated structural and functional brain changes. Ann N Y Acad Sci 1121:562–575PubMedCrossRefGoogle Scholar
  28. 28.
    Callen DJ, Black SE, Caldwell CB, Grady CL (2004) The influence of sex on limbic volume and perfusion in AD. Neurobiol Aging 25:761–770PubMedCrossRefGoogle Scholar
  29. 29.
    Braak H, Braak E, Bohl J (1993) Staging of Alzheimer-related cortical destruction. Eur Neurol 33:403–408PubMedCrossRefGoogle Scholar
  30. 30.
    Kuljis RO, Tikoo RK (1997) Discontinuous distribution of senile plaques within striate cortex hypercolumns in Alzheimer’s disease. Vision Res 37:3573–3591PubMedCrossRefGoogle Scholar
  31. 31.
    Suvà D, Favre I, Kraftsik R, Esteban M, Lobrinus A, Miklossy J (1999) Primary motor cortex involvement in Alzheimer disease. J Neuropathol Exp Neurol 58:1125–1134PubMedCrossRefGoogle Scholar
  32. 32.
    Cronin-Golomb A, Rizzo JF, Corkin S, Growdon JH (1991) Visual function in Alzheimer’s disease and normal aging. Ann N Y Acad Sci 640:28–35PubMedGoogle Scholar
  33. 33.
    Perretti A, Grossi D, Fragassi N, Lanzillo B, Nolano M, Pisacreta AI, Caruso G, Santoro L (1996) Evaluation of the motor cortex by magnetic stimulation in patients with Alzheimer disease. J Neurol Sci 135:31–37PubMedCrossRefGoogle Scholar
  34. 34.
    Ferreri F, Pauri F, Pasqualetti P, Fini R, Dal Forno G, Rossini PM (2003) Motor cortex excitability in Alzheimer’s disease: a transcranial magnetic stimulation study. Ann Neurol 53:102–108PubMedCrossRefGoogle Scholar
  35. 35.
    Lerch JP, Pruessner JC, Zijdenbos A, Hampel H, Teipel SJ, Evans AC (2005) Focal decline of cortical thickness in Alzheimer’s disease identified by computational neuroanatomy. Cereb Cortex 15:995–1001PubMedCrossRefGoogle Scholar
  36. 36.
    Double KL, Halliday GM, Kril JJ, Harasty JA, Cullen K, Brooks WS, Creasey H, Broe GA (1996) Topography of brain atrophy during normal aging and Alzheimer’s disease. Neurobiol Aging 17:513–521PubMedCrossRefGoogle Scholar
  37. 37.
    Fox NC, Black RS, Gilman S, Rossor MN, Griffith SG, Jenkins L, Koller M, AN1792(QS-21)-201 Study (2005) Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology 64:1563–1572PubMedCrossRefGoogle Scholar
  38. 38.
    Hock C, Nitsch RM (2005) Clinical observations with AN-1792 using TAPIR analyses. Neurodegener Dis 2:273–276PubMedCrossRefGoogle Scholar
  39. 39.
    Scahill RI, Schott JM, Stevens JM, Rossor MN, Fox NC (2002) Mapping the evolution of regional atrophy in Alzheimer’s disease: unbiased analysis of fluid-registered serial MRI. Proc Natl Acad Sci USA 99:4703–4707PubMedCrossRefGoogle Scholar
  40. 40.
    Pakkenberg B, Gundersen HJ (1997) Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 384:312–320PubMedCrossRefGoogle Scholar
  41. 41.
    Frisoni GB, Pievani M, Testa C, Sabattoli F, Bresciani L, Bonetti M et al (2007) The topography of grey matter involvement in early and late onset Alzheimer’s disease. Brain 130:720–730PubMedCrossRefGoogle Scholar
  42. 42.
    Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack CR, Jagust W, Trojanowski JQ, Toga AW, Beckett L (2005) Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimers Dement 1:55–66PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Giovanni B. Frisoni
    • 1
    • 2
  • Annapaola Prestia
    • 1
  • Paul E. Rasser
    • 3
    • 4
  • Matteo Bonetti
    • 5
  • Paul M. Thompson
    • 6
  1. 1.Laboratory of Epidemiology Neuroimaging and TelemedicineIRCCS Centro San Giovanni di Dio FBF, The National Centre for Research and Care of Alzheimer’s and Mental DiseasesBresciaItaly
  2. 2.Psychogeriatric WardIRCCS Centro San Giovanni di Dio FBF, The National Centre for Research and Care of Alzheimer’s and Mental DiseasesBresciaItaly
  3. 3.Schizophrenia Research InstituteSydneyAustralia
  4. 4.Priority Centre for Brain and Mental Health Research, School of Design, Communication and ITUniversity of NewcastleNewcastleAustralia
  5. 5.Service of NeuroradiologyIstituto Clinico Città di BresciaBresciaItaly
  6. 6.Laboratory of Neuro ImagingUCLA School of MedicineLos AngelesUSA

Personalised recommendations