Journal of Neurology

, Volume 256, Issue 2, pp 203–212 | Cite as

Relationship between CAG repeat length and brain volume in premanifest and early Huntington’s disease

  • S. M. D. Henley
  • E. J. Wild
  • N. Z. Hobbs
  • R. I. Scahill
  • G. R. Ridgway
  • D. G. MacManus
  • R. A. Barker
  • N. C. Fox
  • S. J. Tabrizi


Huntington’s disease (HD) is caused by an expanded CAG repeat on the gene encoding for the protein huntingtin. There are conflicting findings about the extent to which repeat length predicts signs of the disease or severity of disease progression in adults. This study examined the relationship between CAG repeat length and brain volume in a large cohort of pre- and post-motor onset HD gene carriers, using voxel-based morphometry (VBM), an approach which allowed us to investigate the whole brain without defining a priori regions of interest. We also used VBM to examine group differences between 20 controls, 21 premanifest, and 40 early HD subjects. In the 61 mutation-positive subjects higher CAG repeat length was significantly associated with reduced volume of the body of the caudate nucleus bilaterally, left putamen, right insula, right parahippocampal gyrus, right anterior cingulate, and right occipital lobe, after correcting for age. The group contrasts showed significant reduction in grey matter volume in the early HD group relative to controls in widespread cortical as well as subcortical areas but there was no evidence of difference between controls and premanifest subjects. Overall we have demonstrated that increased CAG repeat length is associated with atrophy in extra-striatal as well as striatal regions, which has implications for the monitoring of disease-modifying therapies in the condition.

Key words

Huntington’s disease voxel-based morphometry magnetic resonance imaging CAG 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashburner J, Friston KJ (2000) Voxelbased morphometry – the methods. Neuroimage 11:805–821PubMedCrossRefGoogle Scholar
  2. 2.
    Aylward EH, Brandt J, Codori AM, Mangus RS, Barta PE, Harris GJ (1994) Reduced basal ganglia volume associated with the gene for Huntington‘s disease in asymptomatic at-risk persons. Neurology 44:823–828PubMedGoogle Scholar
  3. 3.
    Aylward EH, Li Q, Stine OC, Ranen N, Sherr M, Barta PE, Bylsma FW, Pearlson GD, Ross CA (1997) Longitudinal change in basal ganglia volume in patients with Huntington‘s disease. Neurology 48:394–399PubMedGoogle Scholar
  4. 4.
    Chetelat G, Landeau B, Eustache F, Mezenge F, Viader F, de lS, V, Desgranges B, Baron JC (2005) Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study. Neuroimage 27:934–946PubMedCrossRefGoogle Scholar
  5. 5.
    de la Monte SM, Vonsattel JP, Richardson EP Jr (1988) Morphometric demonstration of atrophic changes in the cerebral cortex, white matter, and neostriatum in Huntington‘s disease. J Neuropathol Exp Neurol 47:516–525PubMedCrossRefGoogle Scholar
  6. 6.
    Douaud G, Gaura V, Ribeiro MJ, Lethimonnier F, Maroy R, Verny C, Krystkowiak P, Damier P, Bachoud-Levi AC, Hantraye P, Remy P (2006) Distribution of grey matter atrophy in Huntington‘ s disease patients: a combined ROI-based and voxel-based morphometric study. Neuroimage 32:1562–1575PubMedCrossRefGoogle Scholar
  7. 7.
    Freeborough PA, Fox NC, Kitney RI (1997) Interactive algorithms for the segmentation and quantitation of 3-D MRI brain scans. Computer Methods and Programs in Biomedicine 53:15–25PubMedCrossRefGoogle Scholar
  8. 8.
    Furtado S, Suchowersky O, Rewcastle B, Graham L, Klimek ML, Garber A (1996) Relationship between trinucleotide repeats and neuropathological changes in Huntington‘s disease. Ann Neurol 39:132–136PubMedCrossRefGoogle Scholar
  9. 9.
    Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14:21–36PubMedCrossRefGoogle Scholar
  10. 10.
    Halliday GM, McRitchie DA, Macdonald V, Double KL, Trent RJ, McCusker E (1998) Regional specificity of brain atrophy in Huntington‘s disease. Exp Neurol 154:663–672PubMedCrossRefGoogle Scholar
  11. 11.
    Huntington Study Group (1996) Unified Huntington‘s Disease Rating Scale: reliability and consistency. Huntington Study Group. Mov Disord 11:136–142Google Scholar
  12. 12.
    Jech R, Klempir J, Vymazal J, Zidovska J, Klempirova O, Ruzicka E, Roth J (2007) Variation of selective gray and white matter atrophy in Huntington‘s disease. Mov Disord 22:1783–1789PubMedCrossRefGoogle Scholar
  13. 13.
    Kassubek J, Bernhard LG, Ecker D, Juengling FD, Muche R, Schuller S, Weindl A, Peinemann A (2004) Global cerebral atrophy in early stages of Huntington‘s disease: quantitative MRI study. Neuroreport 15:363–365PubMedCrossRefGoogle Scholar
  14. 14.
    Kassubek J, Juengling FD, Ecker D, Landwehrmeyer GB (2005) Thalamic atrophy in Huntington‘s disease covaries with cognitive performance: a morphometric MRI analysis. Cereb Cortex 15:846–853PubMedCrossRefGoogle Scholar
  15. 15.
    Kassubek J, Juengling FD, Kioschies T, Henkel K, Karitzky J, Kramer B, Ecker D, Andrich J, Saft C, Kraus P, Aschoff AJ, Ludolph AC, Landwehrmeyer GB (2004) Topography of cerebral atrophy in early Huntington‘s disease: a voxel based morphometric MRI study. J Neurol Neurosurg Psychiatry 75: 213–220PubMedGoogle Scholar
  16. 16.
    Mann DM, Oliver R, Snowden JS (1993) The topographic distribution of brain atrophy in Huntington‘s disease and progressive supranuclear palsy. Acta Neuropathol 85:553–559PubMedGoogle Scholar
  17. 17.
    Muhlau M, Gaser C, Wohlschlager AM, Weindl A, Stadtler M, Valet M, Zimmer C, Kassubek J, Peinemann A (2007) Striatal gray matter loss in Huntington‘ s disease is leftward biased. Mov Disord 22:1169–1173PubMedCrossRefGoogle Scholar
  18. 18.
    Muhlau M, Weindl A, Wohlschlager AM, Gaser C, Stadtler M, Valet M, Zimmer C, Kassubek J, Peinemann A (2007) Voxel-based morphometry indicates relative preservation of the limbic prefrontal cortex in early Huntington disease. J Neural Transm 114:367–372PubMedCrossRefGoogle Scholar
  19. 19.
    Muhlau M, Weindl A, Wohlschlager AM, Gaser C, Stadtler M, Valet M, Zimmer C, Kassubek J, Peinemann A (2007) Voxel-based morphometry indicates relative preservation of the limbic prefrontal cortex in early Huntington disease. J Neural Transm 114:367–372PubMedCrossRefGoogle Scholar
  20. 20.
    Muhlau M, Weindl A, Wohlschlager AM, Gaser C, Stadtler M, Valet M, Zimmer C, Kassubek J, Peinemann A (2007) Voxel-based morphometry indicates relative preservation of the limbic prefrontal cortex in early Huntington disease. J Neural Transm 114:367–372PubMedCrossRefGoogle Scholar
  21. 21.
    Paulsen JS, Magnotta VA, Mikos AE, Paulson HL, Penziner E, Andreasen NC, Nopoulos PC (2006) Brain structure in preclinical Huntington‘s disease. Biol Psychiatry 59:57–63PubMedCrossRefGoogle Scholar
  22. 22.
    Peinemann A, Schuller S, Pohl C, Jahn T, Weindl A, Kassubek J (2005) Executive dysfunction in early stages of Huntington‘s disease is associated with striatal and insular atrophy: a neuropsychological and voxel-based morphometric study. J Neurol Sci 239:11–19PubMedCrossRefGoogle Scholar
  23. 23.
    Penney JB Jr, Vonsattel JP, MacDonald ME, Gusella JF, Myers RH (1997) CAG repeat number governs the development rate of pathology in Huntington‘s disease. Ann Neurol 41:689–692PubMedCrossRefGoogle Scholar
  24. 24.
    Rosas HD, Goodman J, Chen YI, Jenkins BG, Kennedy DN, Makris N, Patti M, Seidman LJ, Beal MF, Koroshetz WJ (2001) Striatal volume loss in HD as measured by MRI and the influence of CAG repeat. Neurology 57:1025–1028PubMedGoogle Scholar
  25. 25.
    Rosas HD, Hevelone ND, Zaleta AK, Greve DN, Salat DH, Fischl B (2005) Regional cortical thinning in preclinical Huntington disease and its relationship to cognition. Neurology 65:745–747PubMedCrossRefGoogle Scholar
  26. 26.
    Rosas HD, Liu AK, Hersch S, Glessner M, Ferrante RJ, Salat DH, van der KA, Jenkins BG, Dale AM, Fischl B (2002) Regional and progressive thinning of the cortical ribbon in Huntington‘s disease. Neurology 58:695–701PubMedGoogle Scholar
  27. 27.
    Rosenblatt A, Margolis RL, Becher MW, Aylward E, Franz ML, Sherr M, Abbott MH, Lian KY, Ross CA (1998) Does CAG repeat number predict the rate of pathological changes in Huntington‘s disease? Ann Neurol 44:708–709PubMedCrossRefGoogle Scholar
  28. 28.
    Ruocco HH, Bonilha L, Li LM, Lopes- Cendes I, Cendes F (2007) Longitudinal analysis of regional gray matter loss in Huntington disease: effects of the length of the CAG repeat. J Neurol Neurosurg Psychiatry 79:130–135PubMedCrossRefGoogle Scholar
  29. 29.
    Ruocco HH, Lopes-Cendes I, Li LM, Santos-Silva M, Cendes F (2006) Striatal and extrastriatal atrophy in Huntington‘ s disease and its relationship with length of the CAG repeat. Braz J Med Biol Res 39:1129–1136PubMedCrossRefGoogle Scholar
  30. 30.
    Scahill RI, Schott JM, Stevens JM, Rossor MN, Fox NC (2002) Mapping the evolution of regional atrophy in Alzheimer‘s disease: unbiased analysis of fluid-registered serial MRI. Proc Natl Acad Sci USA 99:4703–4707PubMedCrossRefGoogle Scholar
  31. 31.
    Shelbourne PF, Keller-McGandy C, Bi WL, Yoon SR, Dubeau L, Veitch NJ, Vonsattel JP, Wexler NS, Norman A, Augood SJ (2007) Triplet repeat mutation length gains correlate with celltype specific vulnerability in Huntington disease brain. Hum Mol Genet 16:1133–1142PubMedCrossRefGoogle Scholar
  32. 32.
    Shoulson I, Fahn S (1979) Huntington disease: clinical care and evaluation. Neurology 29:1–3PubMedGoogle Scholar
  33. 33.
    Sieradzan K, Mann DM, Dodge A (1997) Clinical presentation and patterns of regional cerebral atrophy related to the length of trinucleotide repeat expansion in patients with adult onset Huntington’s disease. Neurosci Lett 225:45–48PubMedCrossRefGoogle Scholar
  34. 34.
    Thieben MJ, Duggins AJ, Good CD, Gomes L, Mahant N, Richards F, McCusker E, Frackowiak RS (2002) The distribution of structural neuropathology in pre-clinical Huntington’s disease. Brain 125:1815–1828PubMedCrossRefGoogle Scholar
  35. 35.
    Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577PubMedCrossRefGoogle Scholar
  36. 36.
    Wanker E, Droge A (2002) Structural biology of Huntington’s disease. In: Bates G, Harper P, Jones L (eds) Huntington’s Disease. Oxford, Oxford University Press. Oxford Monographs on Medical Genetics 3:327–347Google Scholar
  37. 37.
    Whitwell JL, Crum WR, Watt HC, Fox NC (2001) Normalization of cerebral volumes by use of intracranial volume: implications for longitudinal quantitative MR imaging. AJNR Am J Neuroradiol 22:1483–1489PubMedGoogle Scholar
  38. 38.
    Williams GB, Nestor PJ, Hodges JR (2005) Neural correlates of semantic and behavioural deficits in frontotemporal dementia. Neuroimage 24: 1042–1051PubMedCrossRefGoogle Scholar
  39. 39.
    Wolf RC, Vasic N, Schonfeldt-Lecuona C, Landwehrmeyer GB, Ecker D (2007) Dorsolateral prefrontal cortex dysfunction in presymptomatic Huntington’s disease: evidence from eventrelated fMRI. Brain 130:2845–2857PubMedCrossRefGoogle Scholar

Copyright information

© Steinkopff-Verlag 2009

Authors and Affiliations

  • S. M. D. Henley
    • 1
    • 7
  • E. J. Wild
    • 1
  • N. Z. Hobbs
    • 1
  • R. I. Scahill
    • 1
  • G. R. Ridgway
    • 2
  • D. G. MacManus
    • 3
  • R. A. Barker
    • 4
  • N. C. Fox
    • 1
    • 5
  • S. J. Tabrizi
    • 5
    • 6
  1. 1.Dementia Research CentreInstitute of Neurology, University CollegeLondonUK
  2. 2.Centre for Medical Image ComputingUniversity CollegeLondonUK
  3. 3.NMR Research Unit, Institute of NeurologyUniversity CollegeLondonUK
  4. 4.Brain Repair Centre, Dept. of Clinical NeurosciencesAddenbrooke’s HospitalCambridgeUK
  5. 5.Dept. of Clinical NeurologyNational Hospital for Neurology and NeurosurgeryLondonUK
  6. 6.Dept. of Neurodegenerative Disease, Institute of NeurologyUniversity College LondonLondonUK
  7. 7.Dementia Research CentreNational Hospital for Neurology and NeurosurgeryLondonUK

Personalised recommendations