Advertisement

Journal of Neurology

, Volume 255, Issue 11, pp 1657–1661 | Cite as

Improvement of motor functions by noisy vestibular stimulation in central neurodegenerative disorders

  • W. Pan
  • R. Soma
  • S. Kwak
  • Y. Yamamoto
Original Communication

Abstract

Through the cerebellar vermis, the vestibular nerves are known to influence the basal ganglia and the limbic system. By means of noisy galvanic vestibular stimulation (GVS), it may be possible to ameliorate movement disorders, particularly akinesic symptoms, in patients with central neurodegenerative disorders. We evaluated the effect of 24-hour noisy GVS on a power-law temporal autocorrelation exponent of daytime wrist activity, separately for higher (local maxima) and lower (local minima) levels of activity, in 14 hospitalized patients. The power-law exponent for the local maxima was significantly (p < 0.002) lower with the noisy GVS than with sham stimulation, suggestive of more frequent switching behavior from low to high levels of activity or less severe akinesia. The noisy GVS may thus potentially improve certain motor dysfunctions in patients with distinct central neurodegenerative diseases.

Key words

Parkinson’s disease multiple system atrophy physical activity power-law exponent stochastic resonance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert TJ, Dempesy CW, Sorenson CA (1985) Anterior cerebellar vermal stimulation: effect on behavior and basal forebrain neurochemistry in rat. Biol Psychiat 20:1267–1276PubMedCrossRefGoogle Scholar
  2. 2.
    Anderson CM, Polcari A, Lowen SB, Renshaw PF, Teicher MH (2002) Effects of methylphenidate on functional magnetic resonance relaxometry of the cerebellar vermis in boys with ADHD. Am J Psychiat 159:1322–1328PubMedCrossRefGoogle Scholar
  3. 3.
    Barmack NH (2003) Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull 60:511–541PubMedCrossRefGoogle Scholar
  4. 4.
    Chaudhuri A, Behan PO (2000) Fatigue and basal ganglia. J Neurol Sci 179:34–42PubMedCrossRefGoogle Scholar
  5. 5.
    Collins JJ, Imhoff TT, Grigg P (1996) Noise-enhanced information transmission in rat SA1 cutaneous mechanoreceptors via aperiodic stochastic resonance. J Neurophysiol 76:642–645PubMedGoogle Scholar
  6. 6.
    Fitzpatrick RC, Day BL (2004) Probing the human vestibular system with galvanic stimulation. J Appl Physiol 96:2301–2316PubMedCrossRefGoogle Scholar
  7. 7.
    George MS, Sackeim HA, Rush AJ, Marangell LB, Nahas Z, Husain MM, Lisanby S, Burt T, Goldman J, Ballenger JC (2000) Vagus nerve stimulation: a new tool for brain research and therapy. Biol Psychiat 47:287–295PubMedCrossRefGoogle Scholar
  8. 8.
    Moss F, Ward LM, Sannita WG (2004) Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophysiol 115:267–281PubMedCrossRefGoogle Scholar
  9. 9.
    Newlands SD, Perachio AA (2003) Central projections of the vestibular nerve: a review and single fiber study in the Mongolian gerbil. Brain Res Bull 60:475–495PubMedCrossRefGoogle Scholar
  10. 10.
    Ohashi K, Nunes Amaral LA, Natelson BH, Yamamoto Y (2003) Asymmetrical singularities in real-world signals. Phys Rev E 68:065204CrossRefGoogle Scholar
  11. 11.
    Pan W, Ohashi K, Yamamoto Y, Kwak S (2007) Power-law temporal autocorrelation of activity reflects severity of parkinsonism. Mov Disord 22:1308–1313PubMedCrossRefGoogle Scholar
  12. 12.
    Rush AJ, George MS, Sackeim HA, Marangell LB, Husain MM, Giller C, Nahas Z, Haines S, Simpson RK Jr, Goodman R (2000) Vagus nerve stimulation (VNS) for treatment-resistant depressions: a multicenter study. Biol Psychiat 47:276–286PubMedCrossRefGoogle Scholar
  13. 13.
    Rutecki P (1990) Anatomical, physiological, and theoretical basis for the antiepileptic effect of vagus nerve stimulation. Epilepsia 31(Suppl 2):S1–S6PubMedCrossRefGoogle Scholar
  14. 14.
    Soma R, Nozaki D, Kwak S, Yamamoto Y (2003) 1/f noise outperforms white noise in sensitizing baroreflex function in the human brain. Phys Rev Lett 91:078101PubMedCrossRefGoogle Scholar
  15. 15.
    Teicher MH (1995) Actigraphy and motion analysis: new tools for psychiatry. Harvard Rev Psychiat 3:18–35CrossRefGoogle Scholar
  16. 16.
    Wiesenfeld K, Moss F (1995) Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373:33–36PubMedCrossRefGoogle Scholar
  17. 17.
    Yamamoto Y, Struzik ZR, Soma R, Ohashi K, Kwak S (2005) Noisy vestibular stimulation improves autonomic and motor responsiveness in central neurodegenerative disorders. Ann Neurol 58:175–181PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.Dept. of Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
  2. 2.Educational Physiology Laboratory, Graduate School of EducationThe University of TokyoTokyoJapan

Personalised recommendations