Journal of Neurology

, Volume 255, Issue 8, pp 1231–1235 | Cite as

Dopaminergic midbrain neurons are the prime target for mitochondrial DNA deletions

  • A. Bender
  • R.-M. Schwarzkopf
  • A. McMillan
  • K. J. Krishnan
  • G. Rieder
  • M. Neumann
  • M. Elstner
  • D. M. Turnbull
  • T. Klopstock
ORIGINAL COMMUNICATION

Abstract

Mitochondrial dysfunction is a consistent finding in neurodegenerative disorders like Alzheimer’s (AD) or Parkinson’s disease (PD) but also in normal human brain aging. In addition to respiratory chain defects, damage to mitochondrial DNA (mtDNA) has been repeatedly reported in brains from AD and PD patients. Most studies though failed to detect biologically significant point mutation or deletion levels in brain homogenate. By employing quantitative single cell techniques, we were recently able to show significantly high levels of mtDNA deletions in dopaminergic substantia nigra (SN) neurons from PD patients and age-matched controls. In the present study we used the same approach to quantify the levels of mtDNA deletions in single cells from three different brain regions (putamen, frontal cortex, SN) of patients with AD (n = 9) as compared to age-matched controls (n = 8). There were no significant differences between patients and controls in either region but in both groups the deletion load was markedly higher in dopaminergic SN neurons than in putamen or frontal cortex (p < 0.01; ANOVA). This data shows that there is a specific susceptibility of dopaminergic SN neurons to accumulate substantial amounts of mtDNA deletions, regardless of the underlying clinical phenotype.

Key words

Alzheimer’s disease neurodegeneration mitochondrial DNA deletions Parkinson’s disease oxidative stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anandatheerthavarada HK, Biswas G, Robin MA, Avadhani NG (2003) Mitochondrial targeting and a novel transmembrane arrest of Alzheimer’s amyloid precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol 161:41–54PubMedCrossRefGoogle Scholar
  2. 2.
    Atamna H, Frey WH 2nd (2007) Mechanisms of mitochondrial dysfunction and energy deficiency in Alzheimer’s disease. Mitochondrion 7:297–310PubMedCrossRefGoogle Scholar
  3. 3.
    Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson JS, Betts J, Klopstock T, Taylor RW, Turnbull DM (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38:515–517PubMedCrossRefGoogle Scholar
  4. 4.
    Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson‘s disease. Nat Neurosci 3:1301–1306PubMedCrossRefGoogle Scholar
  5. 5.
    Betts J, Lightowlers RN, Turnbull DM (2004) Neuropathological aspects of mitochondrial DNA disease. Neurochem Res 29:505–511PubMedCrossRefGoogle Scholar
  6. 6.
    Boveris A, Cadenas E (2000) Mitochondrial production of hydrogen peroxide: regulation by nitric oxide and the role of ubisemiquinone. IUBMB Life 50:245–250PubMedCrossRefGoogle Scholar
  7. 7.
    Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259PubMedCrossRefGoogle Scholar
  8. 8.
    Cohen G, Farooqui R, Kesler N (1997) Parkinson disease: a new link between monoamine oxidase and mitochondrial electron flow. Proc Natl Acad Sci U S A 94:4890–4894PubMedCrossRefGoogle Scholar
  9. 9.
    Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, McKee AC, Beal MF, Graham BH, Wallace DC (1994) Marked changes in mitochondrial DNA deletion levels in Alzheimer brains. Genomics 23:471–476PubMedCrossRefGoogle Scholar
  10. 10.
    Coskun PE, Beal MF, Wallace DC (2004) Alzheimer‘s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc Natl Acad Sci U S A 101:10726–10731PubMedCrossRefGoogle Scholar
  11. 11.
    Cottrell DA, Blakely EL, Borthwick GM, Johnson MA, Taylor GA, Brierley EJ, Ince PG, Turnbull DM (2000) Role of mitochondrial DNA mutations in disease and aging. Ann N Y Acad Sci 908:199–207PubMedCrossRefGoogle Scholar
  12. 12.
    Cottrell DA, Blakely EL, Johnson MA, Ince PG, Turnbull DM (2001) Mitochondrial enzyme-deficient hippocampal neurons and choroidal cells in AD. Neurology 57:260–264PubMedGoogle Scholar
  13. 13.
    Cottrell DA, Borthwick GM, Johnson MA, Ince PG, Turnbull DM (2002) The role of cytochrome c oxidase deficient hippocampal neurones in Alzheimer‘s disease. Neuropathol Appl Neurobiol 28:390–396PubMedCrossRefGoogle Scholar
  14. 14.
    Dodson MW, Guo M (2007) Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson‘s disease. Curr Opin Neurobiol 17:331–337PubMedCrossRefGoogle Scholar
  15. 15.
    Fasano M, Bergamasco B, Lopiano L (2006) Modifications of the iron-neuromelanin system in Parkinson‘s disease. J Neurochem 96:909–916PubMedCrossRefGoogle Scholar
  16. 16.
    Fornai F, Schluter OM, Lenzi P, Gesi M, Ruffoli R, Ferrucci M, Lazzeri G, Busceti CL, Pontarelli F, Battaglia G, Pellegrini A, Nicoletti F, Ruggieri S, Paparelli A, Sudhof TC (2005) Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and alpha-synuclein. Proc Natl Acad Sci U S A 102:3413–3418PubMedCrossRefGoogle Scholar
  17. 17.
    Fukui H, Diaz F, Garcia S, Moraes CT (2007) Cytochrome c oxidase deficiency in neurons decreases both oxidative stress and amyloid formation in a mouse model of Alzheimer‘s disease. Proc Natl Acad Sci U S A 104:14163–14168PubMedCrossRefGoogle Scholar
  18. 18.
    Gluck M, Ehrhart J, Jayatilleke E, Zeevalk GD (2002) Inhibition of brain mitochondrial respiration by dopamine: involvement of H(2)O(2) and hydroxyl radicals but not glutathione-proteinmixed disulfides. J Neurochem 82:66–74PubMedCrossRefGoogle Scholar
  19. 19.
    Greene JG, Dingledine R, Greenamyre JT (2005) Gene expression profiling of rat midbrain dopamine neurons: implications for selective vulnerability in parkinsonism. Neurobiol Dis 18:19–31PubMedCrossRefGoogle Scholar
  20. 20.
    Hamblet NS, Castora FJ (1997) Elevated levels of the Kearns-Sayre syndrome mitochondrial DNA deletion in temporal cortex of Alzheimer’s patients. Mutat Res 379:253–262PubMedGoogle Scholar
  21. 21.
    Hauptmann S, Keil U, Scherping I, Bonert A, Eckert A, Muller WE (2006) Mitochondrial dysfunction in sporadic and genetic Alzheimer’s disease. Exp Gerontol 41:668–673PubMedCrossRefGoogle Scholar
  22. 22.
    He L, Chinnery PF, Durham SE, Blakely EL, Wardell TM, Borthwick GM, Taylor RW, Turnbull DM (2002) Detection and quantification of mitochondrial DNA deletions in individual cells by real-time PCR. Nucleic Acids Res 30:e68PubMedCrossRefGoogle Scholar
  23. 23.
    Hirsch E, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson‘s disease. Nature 334:345–348PubMedCrossRefGoogle Scholar
  24. 24.
    Khan FH, Sen T, Maiti AK, Jana S, Chatterjee U, Chakrabarti S (2005) Inhibition of rat brain mitochondrial electron transport chain activity by dopamine oxidation products during extended in vitro incubation: implications for Parkinson‘s disease. Biochim Biophys Acta 1741:65–74PubMedGoogle Scholar
  25. 25.
    Krishnan KJ, Bender A, Taylor RW, Turnbull DM (2007). A multiplex realtime PCR method to detect and quantify mitochondrial DNA deletions in individual cells. Anal Biochem 370:127–129PubMedCrossRefGoogle Scholar
  26. 26.
    Krishnan KJ, Greaves LC, Reeve AK, Turnbull D (2007) The ageing mitochondrial genome. Nucleic Acids Res 35:7399–7405PubMedCrossRefGoogle Scholar
  27. 27.
    Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795PubMedCrossRefGoogle Scholar
  28. 28.
    Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollak S, Chaney M, Trinchese F, Liu S, Gunn-Moore F, Lue LF, Walker DG, Kuppusamy P, Zewier ZL, Arancio O, Stern D, Yan SS, Wu H (2004) ABAD directly links Abeta to mitochondrial toxicity in Alzheimer‘s disease. Science 304:448–452PubMedCrossRefGoogle Scholar
  29. 29.
    Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH (2006) Mitochondria are a direct site of A beta accumulation in Alzheimer‘s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 15:1437–1449PubMedCrossRefGoogle Scholar
  30. 30.
    Manczak M, Park BS, Jung Y, Reddy PH (2004) Differential expression of oxidative phosphorylation genes in patients with Alzheimer‘s disease: implications for early mitochondrial dysfunction and oxidative damage. Neuromolecular Med 5:147–162PubMedCrossRefGoogle Scholar
  31. 31.
    Muller FL, Liu Y, Van Remmen H (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 279:49064–49073PubMedCrossRefGoogle Scholar
  32. 32.
    Reddy PH (2007) Mitochondrial dysfunction in aging and Alzheimer‘s disease: strategies to protect neurons. Antioxid Redox Signal 9:1647–1658PubMedCrossRefGoogle Scholar
  33. 33.
    Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson‘s disease. Lancet 1(8649):1269PubMedCrossRefGoogle Scholar
  34. 34.
    Sciacco M, Bonilla E, Schon EA, Di- Mauro S, Moraes CT (1994) Distribution of wild-type and common deletion forms of mtDNA in normal and respiration-deficient muscle fibers from patients with mitochondrial myopathy. Hum Mol Genet 3:13–19 Neuropharmacology 40:927–936PubMedCrossRefGoogle Scholar
  35. 35.
    Shamoto-Nagai M, Maruyama W, Yi H, Akao Y, Tribl F, Gerlach M, Osawa T, Riederer P, Naoi M (2006) Neuromelanin induces oxidative stress in mitochondria through release of iron: mechanism behind the inhibition of 26S proteasome. J Neural Transm 113:633–644PubMedCrossRefGoogle Scholar
  36. 36.
    Werkman TR, Kruse CG, Nievelstein H, Long SK, Wadman WJ (2001) In vitro modulation of the firing rate of dopamine neurons in the rat substantia nigra pars compacta and the ventral tegmental area by antipsychotic drugs.Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • A. Bender
    • 1
  • R.-M. Schwarzkopf
    • 1
  • A. McMillan
    • 1
  • K. J. Krishnan
    • 2
    • 3
  • G. Rieder
    • 4
  • M. Neumann
    • 5
  • M. Elstner
    • 1
  • D. M. Turnbull
    • 2
    • 3
  • T. Klopstock
    • 1
  1. 1.Dept. of Neurology, Mitochondrial NeurogeneticsUniversity of MunichMunichGermany
  2. 2.Mitochondrial Research Group, School of NeurologyNeurobiology and Psychiatry, The Medical School, Newcastle UniversityNewcastle upon TyneUK
  3. 3.Institute for Ageing and HealthNewcastle UniversityNewcastle upon TyneUK
  4. 4.Max von Pettenkofer Institute for MicrobiologyUniversity of MunichMunichGermany
  5. 5.Center for Neuropathology and Prion ResearchUniversity of MunichMunichGermany

Personalised recommendations