Journal of Neurology

, Volume 255, Issue 8, pp 1164–1167

Transcranial sonography in spinocerebellar ataxia type 2

  • M. Mijajlović
  • N. Dragašević
  • E. Stefanova
  • I. Petrović
  • M. Svetel
  • V. S. Kostić
ORIGINAL COMMUNICATION

Abstract

Objective

To study the use of transcranial brain parenchyma sonography (TCS), in particular the echogenic signal in the substantia nigra (SN), in patients with spinocerebellar ataxia type 2 (SCA2), recently recognized as an uncommon cause of parkinsonism.

Methods

Six consecutive and unrelated SCA2 patients without parkinsonian signs, 30 consecutive patients with Parkinson’s disease (PD), and 30 healthy, age- and sexmatched controls were prospectively studied with TCS according to a standardized protocol.

Results

Four (67 %) of the six SCA2 patients exhibited SN hyperechogenicity. In two patients, the hyperechogenicity was classified as moderate (unilateral in both) and in two as marked. Differences between the SN echogenicity of the SCA2 group or the PD group and controls were statistically significant (p < 0.001), while there was no difference between the two groups of patients.

Conclusions

Transcranial brain parenchyma sonography detects SN hyperechogenicity in the majority of patients with SCA2 without parkinsonian signs. It would be important to reproduce our TCS findings in a larger number of SCA2 patients, as well as to test their possible significance in differentiating SCA2 from other types of SCA.

Key words

spinocerebellar ataxia type 2 transcranial sonography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Becker G, Seufert J, Bogdahn U, Reichmann H, Reiners K (1995) Degeneration of substantia nigra in chronic Parkinson’s disease visualized by transcranial color-coded real-time sonography. Neurology 45:182–184PubMedGoogle Scholar
  2. 2.
    Berg D, Siefker C, Becker G (2001) Echogenecity of the substantia nigra in Parkinson’s disease and its relation to clinical findings. J Neurol 248:684–689PubMedCrossRefGoogle Scholar
  3. 3.
    Berg D, Merz B, Reiners K, Naumann M, Becker G (2005) Five-year follow-up study of hyperechogenicity of the substantia nigra in Parkinson’s disease. Mov Disord 20:383–385PubMedCrossRefGoogle Scholar
  4. 4.
    Breneis C, Bosch SM, Schocke M, Wenning GK, Poewe W (2003) Atrophy pattern in SCA2 determined by voxelbased morphometry. Neuroreport 14:1799–1802CrossRefGoogle Scholar
  5. 5.
    Dragašević N, Čuljković B, Klein C, et al. (2006) Frequency analysis and clinical characterization of different types of spinocerebellar ataxia in Serbian patients. Mov Disord 21:187–191PubMedCrossRefGoogle Scholar
  6. 6.
    Durr A, Smadja D, Cancel G, et al. (1995) Autosomal dominant cerebellar ataxia type I in Martinique (French Wets India): clinical and neuropathological analysis of 53 patients from three unrelated SCA2 families. Brain 118:1573–1581PubMedCrossRefGoogle Scholar
  7. 7.
    Estrada R, Galarraga J, Orozco G, et al. (1999) Spinocerebellar ataxia 2 (SCA2): morphometric analysis in 11 autopsies. Acta Neuropathol (Berl) 97:306–310PubMedCrossRefGoogle Scholar
  8. 8.
    Furtado S, Payami H, Lockhart PJ, et al. (2004) Profile of families with parkinsonism- predominant spinocerebellar ataxia type 2 (SCA2). Mov Disord 19:622–629PubMedCrossRefGoogle Scholar
  9. 9.
    Guiffrida S, Saponara R, Restivo DA, et al. (1999) Supratentorial atrophy in spinocerebellar ataxia type 2: MRI study of 20 patients. J Neurol 246:383–388CrossRefGoogle Scholar
  10. 10.
    Gwinn-Hardy K, Chen JY, Liu H-C, et al. (2000) Spinocerebellar ataxia type 2 with parkinsonism in ethnic Chinese. Neurology 55:800–805PubMedGoogle Scholar
  11. 11.
    Iwabuchi K, Tsuchiya K, Uchihara T, Yagishita S (1999) Autosomal dominant spinocerebellar degenerations. Clinical, pathological, and genetic correlations. Rev Neurol (Paris) 4:255–270Google Scholar
  12. 12.
    Klockgether T, Skalez M, Wedekind D, et al. (1998) Autosomal dominant cerebellar ataxia type I: MRI-based volumetry of posterior fossa structures and basal ganglia in spinocerebellar ataxia types 1, 2 and 3. Brain 121:1687–1693PubMedCrossRefGoogle Scholar
  13. 13.
    Lim SW, Zhao Y, Chua E, et al. (2006) Genetic analysis of SCA2, 3 and 17 in idiopathic Parkinson’s disease. Neurosci Lett 403:11–14PubMedCrossRefGoogle Scholar
  14. 14.
    Lu C-S, Wu Chou Y-H, Kuo P-C, Chang H-C, Weng Y-H (2004) The parkinsonian phenotype of spinocerebellar ataxia type 2. Arch Neurol 61:85–87CrossRefGoogle Scholar
  15. 15.
    Payami H, Nutt J, Gancher S, et al. (2003) SCA2 may present as levodoparesponsive parkinsonism. Mov Disord 18:425–429PubMedCrossRefGoogle Scholar
  16. 16.
    Pirker W, Back C, Gerschlager W, et al. (2003) Chronic thalamic stimulation in a patient with spinocerebellar atraxia type 2. Mov Disord 18:221–225Google Scholar
  17. 17.
    Postert T, Eyding J, Berg D, et al. (2004) Transcranial sonography in spinocerebellar ataxia type 3. J Neural Transm 68(Suppl):123–133Google Scholar
  18. 18.
    Rivest J, Quinn N, Gibbs J, Marsden CD (1990) Unilateral abolition of extrapyramidal rigidity after ipsilateral cerebellar infarction. Mov Disord 5:328–330PubMedCrossRefGoogle Scholar
  19. 19.
    Rosenberg RN, Nyhan WL, Bay C, Shore P (1976) Autosomal dominant strato-nigral degeneration: a clinical, pathological and biochemical study of a new genetic disorder. Neurology 26:703–714PubMedGoogle Scholar
  20. 20.
    Shan D-E, Soong B-W, Sun C-H, et al. (2001) Spinocerebellar ataxia type 2 presenting as familial levodopa-responsive-parkinsonism. Ann Neurol 50:812–815PubMedCrossRefGoogle Scholar
  21. 21.
    Shan D-E, Liu R-S, Sun C-M, Lee S-J, Liao K-K, Soong B-W (2004) Presence of spinocerebellar ataxia type 2 gene mutation in a patient with apparently sporadic Parkinson’s disease: clinical implications. Mov Disord 19:1357–1360PubMedCrossRefGoogle Scholar
  22. 22.
    Simon-Sanchez J, Hanson M, Singleton A, et al. (2005) Analysis of SCA-2 and SCA-3 repeats in Parkinsonism: evidence of SCA-2 expansion in a family with autosomal dominant Parkinson’s disease. Neurosci Lett 382:191–194PubMedCrossRefGoogle Scholar
  23. 23.
    Sommer U, Hummel T, Cormann K, et al. (2004) Detection of presymptomatic Parkinson’s disease: combining small tests, transcranial sonography, and SPECT. Mov Disord 19:1196–1202PubMedCrossRefGoogle Scholar
  24. 24.
    Spiegel J, Hellwig D, Mollers D-O, et al. (2006) Transcranial sonography and [123I]FP-CIT SPECT disclose complementary aspects of Parkinson’s disease. Brain 129:1188–1193PubMedCrossRefGoogle Scholar
  25. 25.
    Varrone A, Salvatore E, De Michele G, et al. (2004) Reduced striatal [123I]FPCIT binding in SCA2 patients without parkinsonism. Ann Neurol 55:426–430PubMedCrossRefGoogle Scholar
  26. 26.
    Walter U, Niehaus L, Probst T, Benecke R, Meyer BU, Dressler D (2003) Brain parenchyma sonography discriminates Parkinson’s disease and atypical parkinsonian syndromes. Neurology 60:74–77PubMedCrossRefGoogle Scholar
  27. 27.
    Walter U, Behnke S, Eyding J, et al. (2007) Transcranial brain parenchyma sonography in movement disorders: state of the art. Ultrasound Med Biol 33:15–25PubMedCrossRefGoogle Scholar
  28. 28.
    Wüllner U, Reimold M, Abele M, et al. (2005) Dopamine transporter positron emission tomography in spinocerebellar ataxia type 1, 2, 3, and 6. Arch Neurol 62:1280–1285PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • M. Mijajlović
    • 1
  • N. Dragašević
    • 1
  • E. Stefanova
    • 1
  • I. Petrović
    • 1
  • M. Svetel
    • 1
  • V. S. Kostić
    • 1
  1. 1.Institute of NeurologyCCS Medical SchoolBelgradeSerbia

Personalised recommendations