Journal of Neurology

, Volume 255, Issue 3, pp 390–397 | Cite as

Longitudinal evaluation of clinically early relapsing-remitting multiple sclerosis with diffusion tensor imaging

  • Waqar Rashid
  • Andreas Hadjiprocopis
  • Gerard Davies
  • Collette Griffin
  • Declan Chard
  • Michaela Tiberio
  • Dan Altmann
  • Claudia Wheeler-Kingshott
  • Dan Tozer
  • Alan Thompson
  • David H. Miller


Diffusion tensor imaging (DTI) parameters such as mean diffusivity (MD) and fractional anisotropy (FA) assess aspects of structural integrity within tissue. In relapsing-remitting (RR) multiple sclerosis (MS), abnormalities in normal appearing brain tissue (NABT) have been shown cross-sectionally. The evolution of these abnormalities over time is unclear. We present a longitudinal study investigating early RR MS subjects. The aims were to determine DTI changes over two years and assess the potential of DTI as a longitudinal quantitative marker at this stage of MS. Fifteen controls and 28 patients with RR MS (median disease duration 1.9 years; median EDSS 1.5) had DTI yearly for two years. NABT and whole brain tissue (NABT plus lesions) FA and MD histograms analysed. At baseline, differences in FA were noted between patients and controls (mean [p = 0.042] and peak height [p = 0.008]), while at two years differences in MD were observed (mean [p = 0.008] and peak location [p = 0.024]). However there were no significant DTI differences in longitudinal rates of change between patients and cohorts. In conclusion, although subtle NABT abnormalities were detected in early RR MS, the absence of longitudinal change suggests a limited role for global DTI assessment of NABT in following the early disease course.

Key words

multiple sclerosis MRI diffusion tensor imaging histograms longitudinal analysis normal appearing brain tissue 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitativediffusion-tensor MRI. J Magn Reson B 111:209–219PubMedCrossRefGoogle Scholar
  2. 2.
    Pierpaoli C, Jezzard P, Basser PJ, Barnett A, DiChiro G (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648PubMedGoogle Scholar
  3. 3.
    Papadakis NG, Xing D, Houston GC, Smith JM, Smith MI, James MF, et al. (1999) A study of rotationally invariant and symmetric indices of diffusion anisotropy. Magn Reson Imaging 17:881–892PubMedCrossRefGoogle Scholar
  4. 4.
    Werring DJ, Clark CA, Barker GJ, Thompson AJ, Miller DH (1999) Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis. Neurology 52:1626–1632PubMedGoogle Scholar
  5. 5.
    Bammer R, Augustin M, Strasser- Fuchs, Seifert T, Kapeller P, Stollberger R, et al. (2000) Magnetic resonance diffusion tensor imaging for characterizing diffuse and focal white matter abnormalities in multiple sclerosis. Magn Reson Med 44:583–591PubMedCrossRefGoogle Scholar
  6. 6.
    Ciccarelli O, Werring DJ, Wheeler- Kingshott CAM, Barker GJ, Parker GJM, Thompson AJ, et al. (2001) Investigation of MS normal-appearing brain using diffusion tensor MRI with clinical correlations. Neurology 56:926–933PubMedGoogle Scholar
  7. 7.
    Guo AC, Jewells VL, Provenzale JM (2001) Analysis of normal-appearing white matter in multiple sclerosis: comparison of diffusion tensor MR imaging and magnetization transfer imaging. AJNR Am J Neuroradiol 22:1893–1900PubMedGoogle Scholar
  8. 8.
    Filippi M, Cercignani M, Inglese M, Horsfield MA, Comi G (2001) Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology 56:304–311PubMedGoogle Scholar
  9. 9.
    Cercignani M, Inglese M, Pagani E, Comi G, Filippi M (2001) Mean diffusivity and fractional anisotropy histograms in patients with multiple sclerosis. AJNR Am J Neuroradiol 22:952–958PubMedGoogle Scholar
  10. 10.
    Rashid W, Hadjiprocopis A, Griffin CM, Chard DT, Davies GR, Barker GJ, et al. (2004) Diffusion tensor imaging of early relapsing-remitting multiple sclerosis with histogram analysis using automated segmentation and brain volume correction. Mult Scler 10:9–15PubMedCrossRefGoogle Scholar
  11. 11.
    Cassol E, Ranjeva JP, Ibarrola D, Mékies C, Manelfe C, Clanet M, et al. (2004) Diffusion tensor imaging in multiple sclerosis: a tool for monitoring changes in normal-appearing white matter. Mult Scler 10:188–196PubMedCrossRefGoogle Scholar
  12. 12.
    Caramia F, Pantano P, Di Legge S, Piatella MC, Lenzi D, Paolillo A, et al. (2002) A longitudinal study of MR diffusion changes in normal appearing white matter of patients with early multiple sclerosis. Magn Reson Imaging 20:383–388PubMedCrossRefGoogle Scholar
  13. 13.
    Schmierer K, Altmann DR, Kassim N, Kitzler H, Kerskens CM, Doege CA, et al. (2004) Progressive changes in primary progressive multiple sclerosis normal-appearing white matter: a serial diffusion magnetic resonance imaging study. Mult Scler 10:182–187PubMedCrossRefGoogle Scholar
  14. 14.
    Werring DJ, Brassat D, Droogan AG, Clark CA, Symms MR, Barker GJ, et al. (2000) The pathogenesis of lesions and normal-appearing white matter changes in multiple sclerosis. Brain 123:1667–1676PubMedCrossRefGoogle Scholar
  15. 15.
    Oreja-Guevara C, Rovaris M, Iannucci G, Valsasina P, Caputo D, Cavarretta R, et al. (2005) Progressive gray matter damage in patients with relapsing-remitting multiple sclerosis: a longitudinal diffusion tensor magnetic resonance imaging study. Arch Neurol 62:578–584PubMedCrossRefGoogle Scholar
  16. 16.
    Gallo A, Rovaris M, Riva R, Ghezzi A, Benedetti B, Martinelli V, et al. (2005) Diffusion-tensor magnetic resonance imaging detects normal-appearing white matter damage unrelated to short-term disease activity in patients at the earliest clinical stage of multiple sclerosis. Arch Neurol 62:803–808PubMedCrossRefGoogle Scholar
  17. 17.
    Rovaris M, Judica E, Gallo A, Benedetti B, Sormani MP, Caputo D, et al. (2006) Grey matter damage predicts the evolution of primary progressive multiple sclerosis at 5 years. Brain 129:2628–2634PubMedCrossRefGoogle Scholar
  18. 18.
    Studholme C, Hill DLG, Hawkes DJ (1999) An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognit 32:71–86CrossRefGoogle Scholar
  19. 19.
    Hadjiprocopis A, Rashid W, Tofts PS (2005) Unbiased segmentation of diffusion- weighted magnetic resonance images of the brain using iterative clustering. Magn Reson Imaging 23:877–885PubMedCrossRefGoogle Scholar
  20. 20.
    Hasan KM, Gupta RK, Santos RM, Wolinsky JS, Narayana PA (2005) Diffusion tensor fractional anisotropy of the normal-appearing seven segments of the corpus callosum in healthy adults and relapsing-remitting multiple sclerosis patients. J Magn Reson Imaging 21:735–743PubMedCrossRefGoogle Scholar
  21. 21.
    Poser CM, Paty DW, Scheinberg L, Mc- Donald WI, Davis FA, Ebers GC, et al. (1983) New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 13:227–231PubMedCrossRefGoogle Scholar
  22. 22.
    Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis: Results of an international survey. Neurology 46:907–911PubMedGoogle Scholar
  23. 23.
    Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 33:1444–1452PubMedGoogle Scholar
  24. 24.
    Cutter GR, Baier ML, Rudick RA, Cookfair DL, Fischer JS, Petkau J, et al. (1999) Development of a multiple sclerosis functional composite as a clinical trial outcome measure. Brain 122:871–882PubMedCrossRefGoogle Scholar
  25. 25.
    Basser PJ, Pierpaoli C (1998) A simplified method to measure the diffusion tensor from seven MR images. Magn Reson Med 39:928–934PubMedCrossRefGoogle Scholar
  26. 26.
    Chard DT, Griffin CM, Parker GJM, Kapoor R, Thompson AJ, Miller DH (2002) Brain atrophy in clinically early relapsing-remitting multiple sclerosis. Brain 125:327–337PubMedCrossRefGoogle Scholar
  27. 27.
    Chard DT, Parker GJ, Griffin CM, Thompson AJ, Miller DH (2002) The reproducibility and sensitivity of brain tissue volume measurements derived from an SPM-based segmentation methodology. J Magn Reson Imaging 15:259–267PubMedCrossRefGoogle Scholar
  28. 28.
    Basser PJ, Mattiello J, Le Bihan D (1994) Estimation of the effective selfdiffusion tensor from NMR spin-echo. J Magn Reson B 103:247–254PubMedCrossRefGoogle Scholar
  29. 29.
    Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36:893–906PubMedCrossRefGoogle Scholar
  30. 30.
    Plummer DL (1992) Dispimage: a display and analysis tool for medical images. Riv Neuroradiol 5:489–495Google Scholar
  31. 31.
    Filippi M, Gawne-Cain ML, Gasperini C, van Waesberghe JH, Grimaud J, Barkhof F, et al. (1998) Effect of training and different measurement strategies on the reproducibility of brain MRI lesion load measurements in multiple sclerosis. Neurology 50:238–244PubMedGoogle Scholar
  32. 32.
    Smith SM, De Stefano N, Jenkinson M, Matthews PM (2001) Normalized accurate measurement of longitudinal brain change. J Comput Assist Tomogr 25:466–475PubMedCrossRefGoogle Scholar
  33. 33.
    Goldstein H (1995) Multilevel statistical models. London: ArnoldGoogle Scholar
  34. 34.
    Castriota Scanderbeg A, Tomaiuolo F, Sabatini U, Nocentini U, Grasso MG, Caltagirone C (2000) Demyelinating plaques in relapsing-remitting and secondary-progressive multiple sclerosis: assessment with diffusion MR imaging. AJNR Am J Neuroradiol 21:862–868PubMedGoogle Scholar
  35. 35.
    Griffin CM, Chard DT, Ciccarelli O, Kapoor B, Barker GJ, Thompson AJ, et al. (2001) Diffusion tensor imaging in early relapsing-remitting multiple sclerosis. Mult Scler 7:290–297PubMedGoogle Scholar
  36. 36.
    Nusbaum AO, Tang CY, Wei TC, Buchsbaum MS, Atlas SW (2000) Whole brain diffusion MR histograms differ between MS subtypes. Neurology 54:1421–1426PubMedGoogle Scholar
  37. 37.
    Dalton CM, Chard DT, Davies GR, Miszkiel KA, Altmann DR, Fernando K, et al. (2004) Early development of multiple sclerosis is associated with progressive grey matter atrophy in patients presenting with clinically isolated syndromes. Brain 127:1101–1107PubMedCrossRefGoogle Scholar
  38. 38.
    Chard DT, Griffin CM, Rashid W, Davies GR, Altmann DR, Kapoor R, et al. (2004) Progressive grey matter atrophy in clinically early relapsing-remitting multiple sclerosis. Mult Scler 10:387–391PubMedCrossRefGoogle Scholar
  39. 39.
    Davies GR, Altmann DR, Hadjiprocopis A, Rashid W, Chard DT, Griffin CM, et al. (2005) Increasing normalappearing grey and white matter magnetisation transfer ratio abnormality in early relapsing-remitting multiple sclerosis. J Neurol 252:1037–1044PubMedCrossRefGoogle Scholar
  40. 40.
    Rashid W, Davies GR, Chard DT, Griffin CM, Altmann DR, Gordon R, et al. (2006) Increasing cord atrophy in early relapsing-remitting multiple sclerosis: a 3 year study. J Neurol Neurosurg Psychiatry 77:51–55PubMedCrossRefGoogle Scholar
  41. 41.
    Jones DK, Williams SC, Gasston D, Horsfield MA, Simmons A, Howard R, et al. (2002) Isotropic resolution diffusion tensor imaging with whole brain acquisition in a clinically acceptable time. Hum Brain Mapp 15:216–230PubMedCrossRefGoogle Scholar
  42. 42.
    Wheeler-Kingshott CAM, Boulby P, Symms MR, Barker GJ (2002) Optimised cardiac gating for high-resolution whole brain DTI on a standard scanner. Proc Intl Soc Magn Reson Med 10:1118Google Scholar
  43. 43.
    Padovani A, Borroni B, Brambati SM, Agosti C, Broli M, Alonso R, et al. (2006) Diffusion tensor imaging and voxel based morphometry study in early progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 77:457–463PubMedCrossRefGoogle Scholar
  44. 44.
    Ciccarelli O, Parker GJ, Toosy AT, Wheeler-Kingshott CA, Barker GJ, Boulby PA, et al. (2003) From diffusion tractography to quantitative white matter tract measures: a reproducibility study. Neuroimage 18:349–359CrossRefGoogle Scholar
  45. 45.
    Ciccarelli O, Toosy AT, Parker GJ, Wheeler-Kingshott CA, Barker GJ, Miller DH, et al. (2003) Diffusion tractography based group mapping of major white-matter pathways in the human brain. Neuroimage 19:1545–1555PubMedCrossRefGoogle Scholar

Copyright information

© Steinkopff-Verlag 2008

Authors and Affiliations

  • Waqar Rashid
    • 1
  • Andreas Hadjiprocopis
    • 1
  • Gerard Davies
    • 1
  • Collette Griffin
    • 1
  • Declan Chard
    • 1
  • Michaela Tiberio
    • 1
    • 2
  • Dan Altmann
    • 1
    • 3
  • Claudia Wheeler-Kingshott
    • 1
    • 4
  • Dan Tozer
    • 1
  • Alan Thompson
    • 5
  • David H. Miller
    • 1
  1. 1.MS NMR Research Unit, Dept. of NeuroinflammationInstitute of Neurology, University College LondonLondonUnited Kingdom
  2. 2.Dept. of Neurological and Psychiatric SciencesUniversity of PaduaPaduaItaly
  3. 3.London School of Hygiene and Tropical MedicineLondonUK
  4. 4.Neuroimaging Research GroupInstitute of PsychiatryLondonUK
  5. 5.MS NMR Research Unit, Dept. of HeadacheBrain Injury and Rehabilitation, Institute of Neurology, University College LondonLondonUK

Personalised recommendations