Journal of Neurology

, Volume 255, Issue 3, pp 340–346 | Cite as

Aberrations of dermal connective tissue in patients with cervical artery dissection (sCAD)

  • P. Uhlig
  • P. Bruckner
  • R. Dittrich
  • E. B. Ringelstein
  • G. Kuhlenbäumer
  • U. Hansen
ORIGINAL COMMUNICATION

Abstract

Klinik und Poliklinik für Neurologie Spontaneous cervical artery dissection (sCAD) is a common cause of stroke in patients below 55 years of age. Hereditary connective tissue disorders, including Ehlers-Danlos syndrome type IV, have been associated with sCAD and suprastructural abnormalities of both collagen fibrils and elastic fibers have been found by transmission electron microscopy in the dermis of about 50% of sCAD patients. Here, we investigated dermal connective tissue abnormalities using a novel method. Transmission and immunogold electron microscopy were used to study mechanically generated fragments of dermal matrix suprastructures, in particular collagen fibrils. Analysis of dermal tissue of sCAD patients revealed structurally abnormal collagen fibrils with irregularly contoured surfaces and increased diameters, often associated with a faint or absent banding pattern. Interestingly, only a small number of fibrils displayed short abnormal sections along the length of the fibril. Collagens I and III were present in normal as well as abnormal sections of the fibrils.However, immunogold labeling for the two proteins was strongly increased in abnormal sections.A systematic blinded investigation of skin biopsies of 31 sCAD patients and 17 controls revealed abnormal collagen fibrils in 7 sCAD patients but none of the controls.We conclude that approximately 20% of sCAD patients show collagen fibril alterations, establishing a promising basis for further investigation of connective tissue aberrations in skin biopsies of sCAD patients.

Key words

collagen fibrils sCAD collagen fibril aberrations electron microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brandt T, Hausser I, Orberk E, Grau A, Hartschuh W, Anton-Lamprecht I, Hacke W (1998) Ultrastructural connective tissue abnormalities in patients with spontaneous cervicocerebral artery dissections. Ann Neurol 44:281–285PubMedCrossRefGoogle Scholar
  2. 2.
    Brandt T, Orberk E, Weber R, Werner I, Busse O, Müller BT, Wigger F, Grau A, Grond-Ginsbach C, Hausser I (2001) Pathogenesis of cervical artery dissections: association with connective tissue abnormalities. Neurology 57:24–30PubMedGoogle Scholar
  3. 3.
    Dziewas R, Konrad C, Drager B, Evers S, Besselmann M, Ludemann P, Kuhlenbäumer G, Stogbauer F, Ringelstein EB (2003) Cervical artery dissection – clinical features, risk factors, therapy and outcome in 126 patients. J Neurol 250:1179–1184PubMedCrossRefGoogle Scholar
  4. 4.
    Grau AJ, Brandt T, Buggle F, Orberk E, Mytilineos J, Werle E, Conradt, Krause M, Winter R, Hacke W (1999) Association of cervical artery dissection with recent infection. Arch Neurol 56:851–856PubMedCrossRefGoogle Scholar
  5. 5.
    Grond-Ginsbach C, Klima B, Weber R, Striegel J, Fischer C, Hacke W, Brandt T, Hausser I (2002) Exclusion mapping of the genetic predisposition for cervical artery dissections by linkage analysis. Ann Neurol 52:359–364PubMedCrossRefGoogle Scholar
  6. 6.
    Grond-Ginsbach C, Thomas-Feles C, Werner I, Weber R, Wigger F, Hausser I, Brandt T (2000) Mutations in the tropoelastin gene (ELN) were not found in patients with spontaneous cervical artery dissections. Stroke 31:1935–1938PubMedGoogle Scholar
  7. 7.
    Grond-Ginsbach C, Weber R, Haas J, Orberk E, Kunz S, Busse O, Hausser I, Brandt T, Wildemann B (1999) Mutations in the COL5A1 coding sequence are not common in patients with spontaneous cervical artery dissections. Stroke 30:1887–1890PubMedGoogle Scholar
  8. 8.
    Grond-Ginsbach C, Wigger F, Morcher M, von Pein F, Grau A, Hausser I, Brandt T (2002) Sequence analysis of the COL5A2 gene in patients with spontaneous cervical artery dissections. Neurology 58:1103–1105PubMedGoogle Scholar
  9. 9.
    Hausser I, Müller U, Engelter S, Lyrer P, Pezzini A, Padovani A, Moormann B, Busse O, Weber R, Brandt T, Grond- Ginsbach C (2004) Different types of connective tissue alterations associated with cervical artery dissections. Acta Neuropathol (Berl) 107:509–514PubMedCrossRefGoogle Scholar
  10. 10.
    Kassner A, Hansen U, Miosge N, Reinhardt DP, Aigner T, Bruckner-Tuderman L, Bruckner P, Grässel S (2003) Discrete integration of collagen XVI into tissue-specific collagen fibrils or beaded microfibrils. Matrix Biol 22:131–143PubMedCrossRefGoogle Scholar
  11. 11.
    Kuhlenbäumer G, Muller US, Besselmann M, Rauterberg J, Robenek H, Hunermund G, Brandt T, Ringelstein EB, Stogbauer F (2004) Neither collagen 8A1 nor 8A2 mutations play a major role in cervical artery dissection. A mutation analysis and linkage study. J Neurol 251:357–359PubMedCrossRefGoogle Scholar
  12. 12.
    Kuivaniemi H, Prockop DJ, Wu Y, Madhatheri SL, Kleinert C, Earley JJ, Jokinen A, Stolle C, Majamaa K, Myllyla VV, et al. (1993) Exclusion of mutations in the gene for type III collagen (COL3A1) as a common cause of intracranial aneurysms or cervical artery dissections: results from sequence analysis of the coding sequences of type III collagen from 55 unrelated patients. Neurology 43:2652–2658PubMedGoogle Scholar
  13. 13.
    Marneros AG, Keene DR, Hansen U, Fukai N, Moulton K, Goletz PL, Moiseyev G, Pawlyk BS, Halfter W, Dong S, Shibata M, Li T, Crouch RK, Bruckner P, Olsen BR (2004) Collagen XVIII/endostatin is essential for vision and retinal pigment epithelial function. Embo J 23:89–99PubMedCrossRefGoogle Scholar
  14. 14.
    Morcher M, Hausser I, Brandt T, Grond-Ginsbach C (2003) Heterozygous carriers of Pseudoxanthoma elasticum were not found among patients with cervical artery dissections. J Neurol 250:983–986PubMedCrossRefGoogle Scholar
  15. 15.
    Petruska JA, Hodge AJ (1964) A Subunit Model for the Tropocollagen Macromolecule. Proc Natl Acad Sci USA 51:871–876PubMedCrossRefGoogle Scholar
  16. 16.
    Schievink WI, Michels VV, Piepgras DG (1994) Neurovascular manifestations of heritable connective tissue disorders. A review. Stroke 25:889–903PubMedGoogle Scholar
  17. 17.
    Schievink WI, Mokri B, Whisnant JP (1993) Internal carotid artery dissection in a community. Rochester, Minnesota, 1987–1992. Stroke 24:1678–1680PubMedGoogle Scholar
  18. 18.
    Schievink WI, Wijdicks EF, Kuiper JD (1998) Seasonal pattern of spontaneous cervical artery dissection. J Neurosurg 89:101–103PubMedCrossRefGoogle Scholar
  19. 19.
    Völker W, Besselmann M, Dittrich R, Nabavi D, Konrad C, Dziewas R, Evers S, Grewe S, Kramer SC, Bachmann R, Stögbauer F, Ringelstein EB, Kuhlenbäumer G (2005) Generalized arteriopathy in patients with cervical artery dissection. Neurology 64:1508–1513PubMedCrossRefGoogle Scholar
  20. 20.
    von der Mark H, von der Mark K, Gay S (1976) Study of differential collagen synthesis during development of the chick embryo by immunofluorescence. I. Preparation of collagen type I and type II specific antibodies and their application to early stages of the chick embryo. Dev Biol 48:237–249PubMedCrossRefGoogle Scholar
  21. 21.
    von Pein F, Valkkila M, Schwarz R, Morcher M, Klima B, Grau A, Ala- Kokko L, Hausser I, Brandt T, Grond- Ginsbach C (2002) Analysis of the COL3A1 gene in patients with spontaneous cervical artery dissections. J Neurol 249:862–866PubMedCrossRefGoogle Scholar

Copyright information

© Steinkopff-Verlag 2008

Authors and Affiliations

  • P. Uhlig
    • 3
  • P. Bruckner
    • 3
  • R. Dittrich
    • 2
  • E. B. Ringelstein
    • 1
    • 2
  • G. Kuhlenbäumer
    • 1
    • 2
  • U. Hansen
    • 3
  1. 1.Leibniz-Institut für Arterioskleroseforschung an der Universität MünsterMünsterGermany
  2. 2.Universitätsklinikum MünsterMünsterGermany
  3. 3.Institut für Physiologische Chemie und PathobiochemieUniversitätsklinikum MünsterMünsterGermany

Personalised recommendations