Journal of Neurology

, Volume 254, Supplement 5, pp 27–31 | Cite as

Management of levodopa-induced dyskinesias in Parkinson's disease

Article

Abstract

Long-term administration of levodopa in Parkinson's disease (PD) can cause motor complications such as dyskinesias and motor response fluctuations. An increased risk is associated with more severity and younger age at onset of PD, longer duration of treatment, and higher levodopa dose. Levodopa-induced dyskinesias (LID) consist of peak-dose dyskinesia, biphasic dyskinesia, and off-period dystonia. The pathophysiology of LID includes both pre- and post-synaptic mechanisms. Sensitized responsiveness of striatal dopamine D1, D2, and D3 receptors caused by dopamine depletion might be involved in the development of LID. The frequency and intensity of pulsatile stimulation on these receptors by dopaminergic drugs might also be a key etiologic factor, as could be altered glutamatergic regulation of medium spiny neurons in basal ganglia. Management of LID is based on continuous dopaminergic stimulation treatment such as low but frequent dosing of levodopa, administration of sustained-release levodopa formulation, and intraintestinal or subcutaneous infusion or transdermal delivery of dopaminergic drugs. Dopamine agonists given either as monotherapy or in combination with levodopa may be considered to prevent LID. Evidence suggests that amantadine, unilateral pallidotomy, and bilateral deep brain stimulation of the subthalamic nuclei are effective at avoiding the expression of LID.

Key words

Parkinson's disease dyskinesia dopamine motor complications wearing off 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abercrombie ED, Bonatz AE, Zigmond MJ (1990) Effects of L-DOPA on extracellular dopamine in striatum of normal and 6-hydroxydopamine-treated rats. Brain Res 525:36–44PubMedCrossRefGoogle Scholar
  2. 2.
    Ballard PA, Tetrud JW, Langston JW (1985) Permanent human parkinsonism due to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neurology 35:949–956PubMedGoogle Scholar
  3. 3.
    Bézard E, Ferry S, Mach U, Stark H, Leriche L, Boraud T, Gross C, Sokoloff P (2003) Attenuation of levodopa-induced dyskinesia by normalizing dopamine D3 receptor function. Nat Med 9:762–767PubMedCrossRefGoogle Scholar
  4. 4.
    Block G, Liss C, Reines S, Irr J, Nibbelink D (1997) Comparison of immediate- release and controlled release carbidopa/levodopa in Parkinson's disease. A multicenter 5-year study. The CR First Study Group. Eur Neurol 37:23–27PubMedGoogle Scholar
  5. 5.
    Bordet R, Ridray S, Carboni S, Diaz J, Sokoloff P, Schwartz JC (1997) Induction of dopamine D3 receptor expression as a mechanism of behavioral sensitization to levodopa. Proc Natl Acad Sci USA 94:3363–3367PubMedCrossRefGoogle Scholar
  6. 6.
    Calon F, Grondin R, Morissette M, Goulet M, Blanchet PJ, Di Paolo T, Bedard PJ (2000) Molecular basis of levodopa-induced dyskinesias. Ann Neurol 47:S70–S78PubMedGoogle Scholar
  7. 7.
    Calon F, Rajput AH, Hornykiewicz O, Bedard PJ, Di Paolo T (2003) Levodopa- induced motor complications are associated with alterations of glutamate receptors in Parkinson's disease. Neurobiol Dis 14:404–416PubMedCrossRefGoogle Scholar
  8. 8.
    Chase TN, Holden EM, Brody JA (1973) Levodopa-induced dyskinesias. Comparison in parkinsonism-dementia and amyotrophic lateral sclerosis. Arch Neurol 29:328–333PubMedGoogle Scholar
  9. 9.
    Day M, Wang Z, Ding J, An X, Ingham CA, Shering AF, Wokosin D, Ilijic E, Sun Z, Sampson AR, Mugnaini E, Deutch AY, Sesack SR, Arbuthnott GW, Surmeier DJ (2006) Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat Neurosci 9:251–259PubMedCrossRefGoogle Scholar
  10. 10.
    de la Fuente-Fernández R, Sossi V, Huang Z, Furtado S, Lu JQ, Calne DB, Ruth TJ, Stoessl AJ (2004) Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson's disease: implications for dyskinesia. Brain 127:2747–2754PubMedCrossRefGoogle Scholar
  11. 11.
    Durif F, Debilly B, Galitzky M, Morand D, Viallet F, Borg M, Thobois S, Broussolle E, Rascol O (2004) Clozapine improves dyskinesias in Parkinson disease: a double-blind, placebo-controlled study. Neurology 62:381–388PubMedGoogle Scholar
  12. 12.
    Fahn S, Oakes D, Shoulson I, Kieburtz K, Rudolph A, Lang A, Olanow CW, Tanner C, Marek K; Parkinson Study Group (2004) Levodopa and the progression of Parkinson's disease. N Engl J Med 351:2498–2508PubMedCrossRefGoogle Scholar
  13. 13.
    Fox SH, Lang AE, Brotchie JM (2006) Translation of nondopaminergic treatments for levodopa-induced dyskinesia from MPTP-lesioned nonhuman primates to phase IIa clinical studies: keys to success and roads to failure. Mov Disord 21:1578–1594PubMedCrossRefGoogle Scholar
  14. 14.
    Gardoni RF, Picconi B, Ghiglieri V, Ghiglieri V, Polli F, Bagetta V, Bernardi G, Cattabeni F, Di Luca M, Calabresi P (2006) A critical interaction between NR2B and MAGUK in L-DOPA induced dyskinesia. J Neurosci 26:2914–2922PubMedCrossRefGoogle Scholar
  15. 15.
    Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432PubMedCrossRefGoogle Scholar
  16. 16.
    Goetz CG, Poewe W, Rascol O, Sampaio C (2005) Evidence-based medical review update: pharmacological and surgical treatments of Parkinson's disease 2001 to 2004. Mov Disord 20:523–539PubMedCrossRefGoogle Scholar
  17. 17.
    Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24PubMedCrossRefGoogle Scholar
  18. 18.
    Hadj Tahar A, Gregoire L, Darre A, Belanger N, Meltzer L, Bedard PJ (2004) Effect of a selective glutamate antagonist on L-dopa-induced dyskinesias in drug-naive parkinsonian monkeys. Neurobiol Dis 15:171–176PubMedCrossRefGoogle Scholar
  19. 19.
    Hauser RA, Zesiewicz TA (2006) Clinical trials aimed at detecting neuroprotection in Parkinson's disease. Neurology 66:S58–S68PubMedCrossRefGoogle Scholar
  20. 20.
    Kashihara K, Akiyama K, Ishihara T, Shiro Y, Shomori T (1996) Levodopa but not bromocriptine induced AP-1 and CREB DNA-binding activity in the dopamine-depleted striatum of the rat. Life Sci 58:159–170CrossRefGoogle Scholar
  21. 21.
    Kashihara K, Manabe Y, Murakami T, Abe K (2002) Effects of short- and long-acting dopamine agonists on sensitized dopaminergic neurotransmission in rats with unilateral 6-OHDA lesions. Life Sci 70:1095–1100PubMedCrossRefGoogle Scholar
  22. 22.
    Katzenschlager R, Hughes A, Evans A, Manson AJ, Hoffman M, Swinn L, Watt H, Bhatia K, Quinn N, Lees AJ (2005) Continuous subcutaneous apomorphine therapy improves dyskinesias in Parkinson's disease: a prospective study using single-dose challenges. Mov Disord 20:151–157PubMedCrossRefGoogle Scholar
  23. 23.
    Katzenschlager R, Manson AJ, Evans A, Watt H, Lees AJ (2004) Low dose quetiapine for drug induced dyskinesias in Parkinson's disease: a double blind cross over study. J Neurol Neurosurg Psychiatry 75:295–297PubMedGoogle Scholar
  24. 24.
    Koch G, Brusa L, Caltagirone C, Peppe A, Oliveri M, Stanzione P, Centonze D (2005) rTMS of supplementary motor area modulates therapy-induced dyskinesias in Parkinson's disease. Neurology 65:623–625PubMedCrossRefGoogle Scholar
  25. 25.
    Metman LV, Del Dotto P, van den Munckhof P, Fang J, Mouradian MM, Chase TN (1998) Amantadine as treatment for dyskinesias and motor fluctuations in Parkinson's disease. Neurology 50:1323–1326Google Scholar
  26. 26.
    Mizuno Y, Okuma Y, Kikuchi S, Kuno S, Hashimoto T, Hasegawa K, Mano Y, Miwa H, Murata M, Yamamoto M, Yokochi F, Okiyama R, Kanazawa A, Shinpo K, Chuma T, Higashi T, Maruyama T, Mizuta E, Yamazaki S; Ad Hoc Committee on the Guidelines for the Treatment of Parkinson's Disease, Japanese Neurological Society (2002) A guideline for the treatment of Parkinson's disease. Rinsho Shinkeigaku 42:421–494 (in Japanese)Google Scholar
  27. 27.
    Murata M, Mizusawa H, Yamanouchi H, Kanazawa I (1997) Chronic levodopa therapy enhances dopa absorption: contribution to wearing-off. J Neural Transm 104:1177–1185CrossRefGoogle Scholar
  28. 28.
    Oh JD, Chase TN (2002) Glutamatemediated striatal dysregulation and the pathogenesis of motor response complications in Parkinson's disease. Amino Acids 23:133–139PubMedCrossRefGoogle Scholar
  29. 29.
    Olanow CW, Obeso A, Stocchi F (2006) Continuous dopamine-receptor treatment of Parkinson's disease: scientific rationale and clinical implications. Lancet Neurol 5:677–687PubMedCrossRefGoogle Scholar
  30. 30.
    Olanow CW, Watts RL, Koller WC (2001) An algorithm (decision tree) for the management of Parkinson's disease: treatment guidelines. Neurology 56(Suppl 5):S1–S88PubMedGoogle Scholar
  31. 31.
    Pahwa R, Factor SA, Lyons KE, Ondo WG, Gronseth G, Bronte-Stewart H, Hallett M, Miyasaki J, Stevens J, Weiner WJ (2006) Practice parameter: treatment of Parkinson disease with motor fluctuations and dyskinesia (an evidence-based review). Neurology 66:983–995PubMedCrossRefGoogle Scholar
  32. 32.
    Plotkin M, Amthauer H, Quill S, Marzinzik F, Klostermann F, Klaffke S, Kivi A, Gutberlet M, Felix R, Kupsch A (2005) Imaging of dopamine transporters and D2 receptors in vascular parkinsonism: a report of four cases. J Neural Transm 112:1355–1361PubMedCrossRefGoogle Scholar
  33. 33.
    Schrag A, Quinn N (2000) Dyskinesias and motor fluctuations in Parkinson's disease. A community-based study. Brain 123:2297–2305PubMedCrossRefGoogle Scholar
  34. 34.
    Seeman P, Bzowej NH, Guan HC, Bergeron C, Reynolds GP, Bird ED, Riederer P, Jellinger K, Tourtellotte WW (1987) Human brain D1 and D2 dopamine receptors in schizophrenia, Alzheimer's, Parkinson's, and Huntington's diseases. Neuropsychopharmacology 1:5–15PubMedCrossRefGoogle Scholar
  35. 35.
    Smith LA, Jackson MJ, Al-Barghouthy G, Rose S, Kuoppamaki M, Olanow W, Jenner P (2005) Multiple small doses of levodopa plus entacapone produces continuous dopaminergic stimulation and reduces dyskinesia induction in MPTP-treated drug naïve primates. Mov Disord 20:306–314PubMedCrossRefGoogle Scholar
  36. 36.
    Stocchi F, Vacca L, Ruggieri S, Olanow CW (2005) Intermittent vs continuous levodopa administration in patients with advanced Parkinson's disease: a clinical and pharmacokinetic study. Arch Neurol 62:905–910PubMedCrossRefGoogle Scholar
  37. 37.
    Taylor JL, Bishop C, Walker PD (2005) Dopamine D1 and D2 receptor contributions to L-dopa-induced dyskinesia in the dopamine-depleted rat. Pharmacol Biochem Behav 81:887–893PubMedCrossRefGoogle Scholar
  38. 38.
    Van Gerpen JA, Kumar N, Bower JH, Weigand S, Ahlskog JE (2006) Levodopa-associated dyskinesia risk among Parkinson disease patients in Olmsted County, Minnesota, 1976–1990. Arch Neurol 63:205–209PubMedCrossRefGoogle Scholar
  39. 39.
    Venton BJ, Zhang H, Garris PA, Phillips PE, Sulzer D, Wightman RM (2004) Real-time decoding of dopamine concentration changes in the caudateputamen during tonic and phasic firing. J Neurochem 89:1284–1295CrossRefGoogle Scholar
  40. 40.
    Vidailhet M, Bonnet AM, Marconi R, Gouider-Khouja N, Agid Y (1994) Do parkinsonian symptoms and levodopa-induced dyskinesias start in the foot? Neurology 44:1613–1616PubMedGoogle Scholar
  41. 41.
    Widnell K (2005) Pathophysiology of motor fluctuations in Parkinson's disease. Mov Disord 20(Suppl 11):S17–S22PubMedCrossRefGoogle Scholar
  42. 42.
    Zappia M, Annesi G, Nicoletti G, Arabia G, Annesi F, Messina D, Pugliese P, Spadafora P, Tarantino P, Carrideo S, Civitelli D, De Marco EV, Ciro-Candiano IC, Gambardella A, Quattrone A (2005) Sex differences in clinical and genetic determinants of levodopa peak-dose dyskinesias in Parkinson's disease: an exploratory study. Arch Neurol 63:601–605CrossRefGoogle Scholar

Copyright information

© Steinkopff-Verlag 2007

Authors and Affiliations

  1. 1.Dept. of NeurologyOkayama Kyokuto HospitalOkayamaJapan

Personalised recommendations