Journal of Neurology

, Volume 255, Issue 1, pp 64–69 | Cite as

Hyperhomocysteinemia is associated with cognitive impairment in multiple sclerosis

  • C. Russo
  • F. Morabito
  • F. Luise
  • A. Piromalli
  • L. Battaglia
  • A. Vinci
  • V. Trapani Lombardo
  • V. de Marco
  • P. Morabito
  • F. Condino
  • A. Quattrone
  • U. Aguglia
ORIGINAL COMMUNICATION

Abstract

Hyperhomocysteinemia (HHcy) has been associated with cognitive impairment in various neurological diseases. Cognitive impairment occurs early in multiple sclerosis (MS). Conflicting data have been reported regarding plasma total homocysteine (tHcy) levels in MS patients, and the impact of HHcy on cognitive impairment in MS is not known. This study investigated whether plasma total homocysteine levels are increased in MS and if HHcy is associated with cognitive impairment in MS. We compared tHcy levels in 94 patients with MS and 53 healthy age-matched controls. We used a neuropsychological test battery that included the Raven’s Coloured Progressive Matrices, the Visual Search Test, the Trail Making Test A and B, the Immediate and Delayed Recall of a Short Story, the 30 Paired Word Associates, the Rey-Osterrieth Complex Figure Test, and the Semantic and Verbal Fluency Tests. Clinical (sex, age, type of MS, relapse, disease duration, coexisting disease, smoking habit, and physical disability) and laboratory variables (HHcy, low serum levels of folate and vit.B12, MTHFR genotype) were evaluated for their ability to predict cognitive impairment. The mean tHcy was higher in patients (13.19 μmol/L, SD5.58) than in controls (9.81 μmol/L, SD2.53; p < 0.001). Univariate analysis determined the following factors to be associated with cognitive impairment: higher age at observation, chronic progressive course of disease, longer disease duration,moderate or severe physical disability, and frequency of HHcy. With multivariate regression analysis, there remained a significant association only between frequency of HHcy and cognitive impairment (β 0.262, p = 0.01). We conclude that tHcy levels are increased in MS and that HHcy is associated with cognitive impairment in this disease.

Key words

cognitive performance homocysteine multiple sclerosis neuropsychology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amato MP, Ponziani G, Siracusa G, Sorbi S (2001) Cognitive dysfunction in early-onset multiple sclerosis. A reappraisal after 10 years. Arch Neurol 58:1602–1606PubMedCrossRefGoogle Scholar
  2. 2.
    Piras MR, Magnano I, Canu ED, Paulus KS, Satta WM, Soddu A, Conti M, Achee A, Solinas G, Aiello I (2003) Longitudinal study of cognitive dysfunction in multiple sclerosis: neuropsychological, neuroradiological, and neurophysiological findings. J Neurol Neurosurg Psychiatry 74:878–885PubMedCrossRefGoogle Scholar
  3. 3.
    Kujala P, Portin R, Ruutiainen J (1997) The progress of cognitive decline in multiple sclerosis. A controlled 3-year follow-up. Brain 120:289–297PubMedCrossRefGoogle Scholar
  4. 4.
    Rovaris M, Filippi M, Falautano M, Minicucci L, Rocca MA, Martinelli V, Comi G (1998) Relation between MR abnormalies and patterns of cognitive impairment in multiple sclerosis. Neurology 6:1601–1608Google Scholar
  5. 5.
    Selhub J, Miller JW (1992)The pathogenesis of homocysteinemia: interruption of the coordinate regulation by S-adenosylmethionine of the remethylation and transsulfuration of homocysteine. Am J Clin Nutr 55:131–138PubMedGoogle Scholar
  6. 6.
    Selhub J (1999) Homocysteine metabolism. Annu Rev Nutr 19:217–246PubMedCrossRefGoogle Scholar
  7. 7.
    Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D'Agostino RB, Wilson PW, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483PubMedCrossRefGoogle Scholar
  8. 8.
    Diaz-Arrastia R (2000) Homocysteine and Neurologic Disease. Arch Neurol 57:1422–1427PubMedCrossRefGoogle Scholar
  9. 9.
    Dufouil C, Alperovitch A, Ducros V, Tzourio C (2003) Homocysteine, White Matter Hyperintensities, and Cognition in Healthy Elderly People. Ann Neurol 53:214–221PubMedCrossRefGoogle Scholar
  10. 10.
    Prins ND, Den Heijer T, Hofman A, Koudstaal PJ, Jolles J, Clarke R, Breteler MM (2002) Homocysteine and cognitive function in the elderly: the Rotterdam Scan Study. Neurology 59:1375–1380PubMedGoogle Scholar
  11. 11.
    Rio J, Montalban J, Tintore M, Codina A, Malinow MR (1994) Serum homocysteine levels in multiple sclerosis. Arch Neurol 51:1181PubMedGoogle Scholar
  12. 12.
    Vrethem M, Mattsson E, Hebelka H, Leerbeck K, Osterberg A, Landtblom AM, Balla B, Nilsson H, Hultgren M, Brattstrom L, Kagedal B (2003) Increased plasma homocysteine levels without signs of vitamin B12 deficiency in patients with multiple sclerosis assessed by blood and cerebrospinal fluid homocysteine and methylmalonic acid. Mult Scler 9:239–245PubMedCrossRefGoogle Scholar
  13. 13.
    Ramsaransing GSM, Fokkema MR, Teelken A, Arutjunyan AV, Koch M, De Keyser J (2006) Plasma homocysteine levels in multiple sclerosis. J Neurol Neurosurg Psychiatry 77:189–192PubMedCrossRefGoogle Scholar
  14. 14.
    Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, Lublin FD, Metz LM, McFarland HF, O’Connor PW, Sandberg-Wollheim M, Thompson AJ, Weinshenker BG, Wolinsky JS (2005) Diagnostic criteria for Multiple Sclerosis: 2005 Revisions to the “Mc- Donald Criteria”. Ann Neurol 58:840–846PubMedCrossRefGoogle Scholar
  15. 15.
    Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J (1961) An inventory for measuring depression. Arch Gen Psychiatry 4:561–571PubMedGoogle Scholar
  16. 16.
    Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452PubMedGoogle Scholar
  17. 17.
    Basso A, Capitani E, Laiacona M (1987) Raven's coloured progressive matrices: normative values on 305 adult normal controls. Funct Neurol 2:189–194PubMedGoogle Scholar
  18. 18.
    Spinnler H, Tognoni G (1987) Gruppo Italiano per lo Studio Neuropsicologico dell’Invecchiamento: Standardizzazione e taratura italiana di test neuropsicologici. Ital J Neurol Sci (Suppl 8):6Google Scholar
  19. 19.
    Giovagnoli AR, Del Pesce M, Mascheroni S, Simoncelli M, Laiacona M, Capitani E (1996) Trail making test: normative values from 287 normal adult controls. Ital J Neurol Sci 17:305–309PubMedCrossRefGoogle Scholar
  20. 20.
    Novelli G, Papagno C, Capitani E, Laiacona M, Vallar G, Cappa S (1986) Tre test clinici di memoria verbale a lungo termine. Taratura su soggetti normali. Arch Psicol Neurol Psichiatr 47:278–296Google Scholar
  21. 21.
    Caffarra P, Vezzadini G, Dieci F, Zonato F, Venneri A (2002) Rey-Osterrieth complex figure: normative values in an Italian population sample. Neurol Sci 22:443–447PubMedCrossRefGoogle Scholar
  22. 22.
    Novelli G, Papagno C, Capitani E, Laiacona M, Vallar G, Cappa S (1986) Tre test clinici di ricerca e produzione lessicale. Taratura su soggetti normali. Arch Psicol Neurol Psichiatr 47:477–506Google Scholar
  23. 23.
    Frantzen F, Faaren AL, Alfheim I, Nordheim AK (1998) Enzyme conversion immunoassay for determining total homocysteine in plasma or serum. Clin Chem 44:311–316PubMedGoogle Scholar
  24. 24.
    Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJH, den Heijer M, Kluijtmans LAJ, van den Heuve LP, Rozen R (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylene tetrahydrofolate reductase. Nat Genet 10:111–113PubMedCrossRefGoogle Scholar
  25. 25.
    Feng L, Ng TP, Chuah L, Niti M, Kua EH (2006) Homocysteine, folate, and vitamin B-12 and cognitive performance in older Chinese adults: findings from the Singapore Longitudinal Ageing Study. Am J Clin Nutr 84:1506–1512PubMedGoogle Scholar
  26. 26.
    Teunissen CE, van Boxtel MP, Jolles J, de Vente J, Vreeling F, Verhey F, Polman CH, Dijkstra CD, Blom HJ (2005) Homocysteine in relation to cognitive performance in pathological and nonpathological conditions. Clin Chem Lab Med 43:1089–1095PubMedCrossRefGoogle Scholar
  27. 27.
    Savettieri G, Messina D, Andreoli V, Bonavita S, Caltagirone C, Cittadella R, Farina D, Fazio MC, Girlanda P, Le Pira F, Liguori M, Lugaresi A, Nocentini U, Reggio A, Salemi G, Tedeschi G, Trojano M, Valentino P, Quattrone A (2004) Gender-related effect of clinical and genetic variables on the cognitive impairment in multiple sclerosis. J Neurol 251:1208–1214PubMedCrossRefGoogle Scholar
  28. 28.
    Calabrese P (2006) Neuropsychology of multiple sclerosis. An overview. J Neurol 253 (Suppl 1):10–15CrossRefGoogle Scholar
  29. 29.
    Amato MP, Zipoli V, Portaccio E (2006) Multiple sclerosis-related cognitive changes: a review of cross-sectional and longitudinal studies. J Neurol Sci 245:41–46PubMedCrossRefGoogle Scholar
  30. 30.
    den Heijer T, Vermeer SE, Clarke R, Oudkerk M, Koudstaal PJ, Hofman A, Breteler MM (2003) Homocysteine and brain atrophy on MRI of non-demented elderly. Brain 126:170–175PubMedCrossRefGoogle Scholar

Copyright information

© Steinkopff-Verlag 2007

Authors and Affiliations

  • C. Russo
    • 2
  • F. Morabito
    • 3
  • F. Luise
    • 1
  • A. Piromalli
    • 1
  • L. Battaglia
    • 2
  • A. Vinci
    • 2
  • V. Trapani Lombardo
    • 1
  • V. de Marco
    • 5
  • P. Morabito
    • 2
  • F. Condino
    • 5
  • A. Quattrone
    • 4
    • 5
  • U. Aguglia
    • 4
    • 6
  1. 1.Thrombosis and Hemostasis’s CentreItaly
  2. 2.Neurologic UnitAzienda Ospedaliera, Bianchi-Melacrino-MorelliReggio CalabriaItaly
  3. 3.Hematology UnitAzienda OspedalieraCosenzaItaly
  4. 4.Chair of NeurologyMagna Graecia UniversityCatanzaroItaly
  5. 5.Institute of Neurological SciencesNational Research CouncilMangone (Cosenza)Italy
  6. 6.Magna Graecia University of CatanzaroRegional Epilepsy Center at Azienda OspedalieraReggio Cal.Italy

Personalised recommendations