Journal of Neurology

, Volume 254, Issue 12, pp 1666–1675 | Cite as

Longitudinal CSF isoprostane and MRI atrophy in the progression to AD

  • M. J. de Leon
  • L. Mosconi
  • J. Li
  • S. De Santi
  • Y. Yao
  • W. H. Tsui
  • E. Pirraglia
  • K. Rich
  • E. Javier
  • M. Brys
  • L. Glodzik
  • R. Switalski
  • L. A. Saint Louis
  • D. Pratico
ORIGINAL COMMUNICATION

Abstract

Very little data exist to evaluate the value of longitudinal CSF biological markers for Alzheimer's disease (AD).Most studies indicate that tau and amyloid beta markers do not reflect disease progression. We now report on a longitudinal, three-time point, CSF Isoprostane (IsoP) and quantitative MRI study that examined 11 normal elderly (NL) volunteers and 6 Mild Cognitive Impairment (MCI) patients. After 4 years, all 6 MCI patients declined to AD and 2 of the NL subjects declined to MCI. At baseline and longitudinally, the MCI patients showed reduced delayed memory, increased IsoP levels, and reduced medial temporal lobe gray matter concentrations as compared to NL. A group comprised of all decliners to AD or to MCI (n = 8) was distinguished at baseline from the stable NL controls (n = 9) by IsoP with 100% accuracy.Moreover, both at baseline and longitudinally, the IsoP measures significantly improved the diagnostic and predictive outcomes of conventional memory testing and quantitative MRI measurements. These data indicate that IsoP is potentially useful for both the early detection of AD-related pathology and for monitoring the course of AD.

Key words

Alzheimer's disease CSF biomarkers longitudinal Isoprostane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L (2006) Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study. The Lancet Neurology 5:228–234CrossRefGoogle Scholar
  2. 2.
    Andreasen N, Minthon L, Vanmechelen E (1999) Cerebrospinal fluid tau and Abeta42 as predictors of development of Alzheimer's disease in patients with mild cognitive impairment. Neurosci Lett 273:5–8PubMedCrossRefGoogle Scholar
  3. 3.
    Riemenschneider M, Lautenschlager N, Wagenpfeil S, Diehl J, Drzezga A, Kurz A (2002) Cerebrospinal fluid tau and B-amyloid 42 proteins identify Alzheimer disease in subjects with mild cognitive impairment. Arch Neurol 59:1729–1734PubMedCrossRefGoogle Scholar
  4. 4.
    Hampel H, Teipel SJ, Fuchsberger T, Andreasen N, Wiltfang J, Otto M, Shen Y, Dodel R, Du Y, Farlow, et al. (2004) Value of CSF beta-amyloid1-42 and tau as predictors of Alzheimer's disease in patients with mild cognitive impairment. Mol Psychiatry 9:705–710PubMedGoogle Scholar
  5. 5.
    Herukka SK, Hallikainen M, Soininen H, Pirttila T (2005) CSF Aβ42 and tau or phosphorylated tau and prediction of progressive mild cognitive impairment. Neurol 64:1294–1297Google Scholar
  6. 6.
    Arai H, Ishiguro K, Ohna H, Moriyama M, Itoh N, Okamura N, Matsui T, Morikawa Y, Horikawa E, Imahori K (2000) CSF phosphorylated tau protein and mild cognitive impairment: A prospective study. Exp Neurol 166:201–203PubMedCrossRefGoogle Scholar
  7. 7.
    Buerger K, Teipel SJ, Zinkowski R, Blennow K, Arai H, Engel R, Hofmann- Kiefer K, McCulloch C, Ptok U, Heun R, Andreasen N, DeBernardis J, Kerkman D, Moeller HJ, Davies P, Hampel H (2002) CSF tau protein phosphorylated at threonine 231 correlates with cognitive decline in MCI subjects. Neurol 59:627–629Google Scholar
  8. 8.
    Brys M, Mosconi L, De Santi S, Rich KE, de Leon MJ (2006) CSF Biomarkers for Mild Cognitive Impairment. Aging Health 2:111–121CrossRefGoogle Scholar
  9. 9.
    Glodzik-Sobanska L, Rusinek H, Mosconi L, Li Y, Zhan J, De Santi S, Convit A, Rich KE, Brys M, de Leon MJ (2005) The role of quantitative structural imaging in the early diagnosis of Alzheimer's disease. Neuroimaging Clinics of North America 15:803–826PubMedCrossRefGoogle Scholar
  10. 10.
    de Leon MJ, Klunk WE (2006) Biomarkers for the early diagnosis of Alzheimer's disease. The Lancet Neurology 5:198–199CrossRefGoogle Scholar
  11. 11.
    Hampel H, Buerger K, Kohnken R, Teipel SJ, Zinkowski R, Moeller HJ, Rapoport SI, Davies P (2001) Tracking of Alzheimer's disease progression with cerebrospinal fluid tau protein phosphorylated at threonine 231. Ann Neurol 49:545–546PubMedCrossRefGoogle Scholar
  12. 12.
    de Leon MJ, Segal CY, Tarshish CY, De Santi S, Zinkowski R, Mehta PD, Convit A, Caraos C, Rusinek H, Tsui W, Saint- Louis LA, DeBernardis J, Kerkman D, Qadri F, Gary A, Lesbre P, Wisniewski H, Poirier J, Davies P (2002) Longitudinal CSF tau load increases in mild cognitive impairment. Neurosci Lett 333:183–186PubMedCrossRefGoogle Scholar
  13. 13.
    Montine TJ, Neely MD, Quinn JF, Beal MF, Markesbery WR, Roberts LJ, Morrow JD (2002) Lipid peroxidation in aging brain and Alzheimer's disease. Free Radic Biol Med 33:620–626PubMedCrossRefGoogle Scholar
  14. 14.
    de Leon MJ, De Santi S, Zinkowski R, Mehta PD, Pratico D, Segal S, Rusinek H, Li J, Tsui W, Saint Louis LA, et al. (2006) Longitudinal CSF and MRI biomarkers improve the diagnosis of mild cognitive impairment. Neurobiol Aging 27:394–401PubMedCrossRefGoogle Scholar
  15. 15.
    Quinn JF, Montine KS, Moore M, Morrow JD, Kaye JA, Montine TJ (2004) Suppression of longitudinal increase in CSF F_2-isoprostanes in Alzheimer's disease. J Alz Dis 6:93–97Google Scholar
  16. 16.
    Reisberg B, Ferris SH, de Leon MJ, Crook T (1982) The global deterioration scale for assessment of primary degenerative dementia. Am J Psychiat 139:1136–1139PubMedGoogle Scholar
  17. 17.
    McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurol 34:939–944Google Scholar
  18. 18.
    American Psychiatric Association (1994) Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition). Washington, D. C. : American Psychiatric AssociationGoogle Scholar
  19. 19.
    Pratico D, Clark CM, Lee VM, Trojanowski JQ, Rokach J, Fitzgerald GA (2000) Increased 8, 12-iso-iPF2alpha- VI in Alzheimer's disease: correlation of a noninvasive index of lipid peroxidation with disease severity. Ann Neurol 48:809–812PubMedCrossRefGoogle Scholar
  20. 20.
    Kluger A, Ferris SH, Golomb J, Mittelman, MS, Reisberg B (1999) Neuropsychological prediction of decline to dementia in nondemented elderly. J Geriat Psychiat Neurol 12:168–179CrossRefGoogle Scholar
  21. 21.
    De Santi S, de Leon MJ, Rusinek H, Convit A, Tarshish CY, Boppana M, Tsui WH, Daisley K, Wang GJ, Schlyer D (2001) Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol Aging 22:529–539PubMedCrossRefGoogle Scholar
  22. 22.
    Ashburner J, Friston KJ (2000) Voxelbased morphometry – the methods. Neuroimage 11:805–821PubMedCrossRefGoogle Scholar
  23. 23.
    Good CD, Scahill RI, Fox NC, Ashburner J, Friston KJ, Chan D, Crum WR, Rossor MN, Frackowiak RSJ (2002) Automatic differentiation of anatomical patterns in the human brain: validation with studies of degenerative dementias. Neuroimage 17:29–46PubMedCrossRefGoogle Scholar
  24. 24.
    Talairach J, Tournoux P (1988) Co- Planar stereotaxic atlas of the human brain. Stuttgart: ThiemeGoogle Scholar
  25. 25.
    Friston KJ, Holmes AP, Worsley KJ, Poline J-P, Frith CD, Frackowiak RSJ (1995) Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping 2:189–210CrossRefGoogle Scholar
  26. 26.
    Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RSJ (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14:21–36PubMedCrossRefGoogle Scholar
  27. 27.
    Friston KJ, Frith CD, Liddle PF, Frackowiak RSJ (1991) Comparing functional (PET) images: the assessment of significant change. Journal of Cerebral Blood Flow and Metabolism 11:690–699PubMedGoogle Scholar
  28. 28.
    Friston K, Ashburner J, Frith C, Poline J-B, Heather J, Frackowiak R (1995) Spatial registration and normalization of images. Hum Brain Mapp 3:165–189CrossRefGoogle Scholar
  29. 29.
    Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE (1995) A diagnostic approach in Alzheimer's disease using three-dimensional stereotactic surface projections of Fluorine-18- FDG PET. The J Nucl Med 36(7):1238–1248Google Scholar
  30. 30.
    Diggle PJ, Heagerty P, Liang K-Y, Zeger SC (2002) Analysis of Longitudinal Data. New York: Oxford University PressGoogle Scholar
  31. 31.
    Friston KJ, Stephan KE, Lund TE, Morcom A, Kiebel SJ (2004) Mixedeffects and fMRI studies. Neuroimage 24:244–252CrossRefGoogle Scholar
  32. 32.
    Montine TJ, Beal MF, Cudkowicz ME, O'Donnell H, Margolin RA, McFarland L, Bachrach AF, Zackert WE, Roberts LJ, Morrow, et al. (1999) Increased CSF F2-isoprostane concentration in probable AD. Neurol 52:562–565Google Scholar
  33. 33.
    Pratico D, Clark CM, Liun F, Lee VY, Trojanowski JQ (2002) Increase of brain oxidative stress in mild cognitive impairment: a possible predictor of Alzheimer disease. Arch Neurol 59:972–976PubMedCrossRefGoogle Scholar
  34. 34.
    Markesbery WR, Kryscio RJ, Lovell MA, Morrow JD (2005) Lipid peroxidation is an early event in the brain in amnestic mild cognitive impairment. Ann Neurol 58(5):730–735PubMedCrossRefGoogle Scholar
  35. 35.
    Rusinek H, De Santi S, Frid D, Tsui W, Tarshish C, Convit A, de Leon MJ (2003) Regional brain atrophy rate predicts future cognitive decline: 6- year longitudinal MR imaging study of normal aging. Radiology 229:691–696PubMedCrossRefGoogle Scholar
  36. 36.
    den Heijer T, Geerlings MI, Hoebeek FE, Hofman A, Koudstaal PJ, Breteler M (2006) Use of hippocampal and amygdalar volumes on magnetic resonance imaging to predict dementia in cognitively intact elderly people. Arch Gen Psychiat 63:57–62PubMedCrossRefGoogle Scholar
  37. 37.
    Morrison JH, Hof PR (1997) Life and death of neurons in the aging brain. Science 278:412–419PubMedCrossRefGoogle Scholar
  38. 38.
    Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EKM, Jones PKP, Ghanbari HA, Wataya AT, Shimohama S, Chiba S, Atwood C, Petersen RBP, Smith MA (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60(8):759–767PubMedGoogle Scholar
  39. 39.
    Pratico D, Uryu K, Leight S, Trojanowski JQ, Lee VMY (2001) Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 21:4183–4187PubMedGoogle Scholar
  40. 40.
    Matsuoka Y, Picciano M, La Francois J, Duff K (2001) Fibrillar (beta)-amyloid evokes oxidative damage in a transgenic mouse model of Alzheimer's disease. Neurosci 104:609–613CrossRefGoogle Scholar
  41. 41.
    Buerger K, Zinkowski R, Teipel SJ, Tapiola T, Arai H, Blennow K, Andreasen N, Hofmann-Kiefer K, DeBernardis J, Kerkman D, McCulloch C, Kohnken R, Padberg F, Pirttila T, Schapiro M, Rapoport S, Moller HJ, Davies P, Hampel H (2002) Differential diagnosis of Alzheimer disease with cerebrospinal fluid levels of tau protein phosphorylated at threonine 231. Arch Neurol 59:1267–1272PubMedCrossRefGoogle Scholar
  42. 42.
    Buerger K, Zinkowski R, Teipel SJ, Arai H, DeBernardis J, Kerkman D, McCulloch C, Padberg F, Faltraco F, Goernitz A, Tapiola T, Rapoport SI, Pirttila T, Moller HJ, Hampel H (2003) Differentiation of geriatric major depression from Alzheimer's disease with CSF tau protein phosphorylated at threonine 231. Am J Psychiat 160:376–379PubMedCrossRefGoogle Scholar
  43. 43.
    Buerger K, Otto M, Teipel SJ, Zinkowski R, Blennow K, DeBernardis J, Kerkman D, Schroder J, Schonknecht P, Cepek L (2006) Dissociation between CSF total tau and tau protein phosphorylated at threonine 231 in Creutzfeldt-Jakob disease. Neurobiol Aging 27:10–15PubMedCrossRefGoogle Scholar
  44. 44.
    Arai H, Morikawa Y, Higuchi M, Matsui T, Clark CM, Miura M, Machida N, Lee VM, Trojanowski JQ, Sasaki H (1997) Cerebrospinal fluid tau levels in neurodegenerative diseases with distinct tau-related pathology. Biochem Biophys Res Commun 236:262–264PubMedCrossRefGoogle Scholar
  45. 45.
    Mollenhauer B, Bibl M, Trenkwalder C, Stiens G, Cepek L, Steinacker P, Ciesielczyk B, Neubert K, Wiltfang J, Kretzschmar HA, Poser S, Otto M (2005) Follow-up investigations in cerebrospinal fluid of patients with dementia with Lewy bodies and Alzheimer's disease. J Neural Transm 112:933–948PubMedCrossRefGoogle Scholar
  46. 46.
    Yao Y, Zhukareva V, Sung S, Clark CM, Rokach J, Lee VMY, Trojanowski JQ, Pratico D (2003) Enhanced brain levels of 8, 12-iso-iPF2-VI differentiate AD from frontotemporal dementia. Neurol 61:475–478Google Scholar
  47. 47.
    Montine TJ, Kaye JA, Montine KS, McFarland L, Morrow JD, Quinn JF (2001) Cerebrospinal fluid abeta42, tau, and f2-isoprostane concentrations in patients with Alzheimer disease, other dementias, and in age-matched controls. Arch Pathol Lab Med 125:510–512PubMedGoogle Scholar
  48. 48.
    Lin CL, Hsu YT, Lin TK, Morrow JD, Hsu JC, Hsu YH, Hsieh TC, Tsay PK, Yen HC (2006) Increased levels of F2- isoprostanes following aneurysmal subarachnoid hemorrhage in humans. Free Radic Biol Med 40:1466–1473PubMedCrossRefGoogle Scholar
  49. 49.
    Beal MF (2000) Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci 23:298–304PubMedCrossRefGoogle Scholar
  50. 50.
    De Caterina R, Cipollone F, Filardo FP, Zimarino M, Bernini W, Lazzerini G, Bucciarelli T, Falco A, Marchesani P, Muraro R, Mezzetti A, Ciabattoni G (2002) Low-density lipoprotein level reduction by the 3-hydroxy-3-methylglutaryl coenzyme-A inhibitor simvastatin is accompanied by a related reduction of F2-isoprostane formation in hypercholesterolemic subjects: no further effect of vitamin E. Circulation 106:2543–2549PubMedCrossRefGoogle Scholar
  51. 51.
    Pratico D, Lawson JA, Rokach J, Fitzgerald GA (2001) The isoprostanes in biology and medicine. Trends in Endocrinology and Metabolism 12:243–247PubMedCrossRefGoogle Scholar
  52. 52.
    Ding T, Yao Y, Pratico D (2005) Increase in peripheral oxidative stress during hypercholesterolemia is not reflected in the central nervous system: evidence from two mouse models. Neurochemistry International 46:435–439PubMedCrossRefGoogle Scholar

Copyright information

© Steinkopff Verlag 2007

Authors and Affiliations

  • M. J. de Leon
    • 1
    • 3
  • L. Mosconi
    • 1
  • J. Li
    • 1
  • S. De Santi
    • 1
  • Y. Yao
    • 4
  • W. H. Tsui
    • 1
    • 3
  • E. Pirraglia
    • 1
  • K. Rich
    • 1
  • E. Javier
    • 1
  • M. Brys
    • 1
  • L. Glodzik
    • 1
  • R. Switalski
    • 1
  • L. A. Saint Louis
    • 1
    • 5
  • D. Pratico
    • 2
    • 4
  1. 1.New York University, School of MedicineCenter for Brain Health MHL 400New YorkUSA
  2. 2.University TemplePhiladelphiaUSA
  3. 3.Nathan Kline InstituteOrangeburgUSA
  4. 4.University of PennsylvaniaPhiladelphiaUSA
  5. 5.Cornell University,NYNew YorkUSA

Personalised recommendations