Journal of Neurology

, Volume 253, Supplement 3, pp iii30–iii34

Neuroimaging of PD, PSP, CBD and MSA—PET and SPECT studies

Article

Abstract

Functional imaging studies with positron emission tomography (PET) and single photon emission computed tomography (SPECT) have shown alterations in glucose metabolism, perfusion, dopaminergic systems, cholinergic systems and activation of microglia in the brains of patients with Parkinson’s disease (PD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and multiple system atrophy (MSA). [18F]fluorodeoxyglucose-PET and perfusion SPECT show characteristic changes in brain glucose metabolism and perfusion, which are useful for differential diagnosis of these disorders. [18F]dopa-PET and SPECT studies of dopamine transporters show marked impairment of nigrostriatal neuronal terminals in PD, PSP, CBD and MSA. PET studies with carbon-11-labeled acetylcholine analogs have shown mild to moderate reduction of acetylcholinesterase (AChE) activity in the cerebral cortex in PD, severe reduction of AChE activity in the thalamus in PSP, and marked reduction of AChE activity in the cerebellum. [11C](R)-PK11195-PET studies have shown an increase in activated microglia in brain regions that mirror the known distribution of neuropathologic changes in PD, CBD and MSA, which provides insight into the pathophysiology of these disorders.

Key words

parkinsonism progressive supranuclear palsy corticobasal degeneration multiple system atrophy emission tomography 

References

  1. 1.
    Abe Y, Kachi T, Kato T et al. (2003) Occipital hypoperfusion in Parkinson’s disease without dementia: correlation to impaired cortical visual processing. J Neurol Neurosurg Psychiatry 74:419–422PubMedCrossRefGoogle Scholar
  2. 2.
    Banati RB (2002) Visualizing microglial activation in vivo. Glia 40:206–217PubMedCrossRefGoogle Scholar
  3. 3.
    Bohnen NI, Kaufer DI, Ivanco LS et al. (2003) Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study. Arch Neurol 60:1745–1748PubMedCrossRefGoogle Scholar
  4. 4.
    Brooks DJ, Ibanez V, Sawle GV et al. (1990) Differing patterns of striatal 18F-dopa uptake in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol 28:547–555PubMedCrossRefGoogle Scholar
  5. 5.
    Cilia R, Marotta G, Benti R, Pezzoli G, Antonini A (2005) Brain SPECT imaging in multiple system atrophy. J Neural Transm 112:1635–1645PubMedCrossRefGoogle Scholar
  6. 6.
    Eckert T, Barnes A, Dhawan V et al. (2005) FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage 26:912–921PubMedCrossRefGoogle Scholar
  7. 7.
    Filippi L, Manni C, Pierantozzi M et al. (2006) 123I-FP-CIT in progressive supranuclear palsy and in Parkinson’s disease: a SPECT semiquantitative study. Nucl Med Commun 27:381–386PubMedCrossRefGoogle Scholar
  8. 8.
    Gerhard A, Banati RB, Goerres GB et al. (2003) [11C](R)-PK11195 PET imaging of microglial activation in multiple system atrophy. Neurology 61:686–689PubMedGoogle Scholar
  9. 9.
    Gerhard A, Watts J, Trender-Gerhard I et al. (2004) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in corticobasal degeneration. Mov Disord 19:1221–1226PubMedCrossRefGoogle Scholar
  10. 10.
    Henkel K, Karitzky J, Schmid M et al. (2004) Imaging of activated microglia with PET and [11C]PK11195 in corticobasal degeneration. Mov Disord 19:817–821PubMedCrossRefGoogle Scholar
  11. 11.
    Hilker R, Thomas AV, Klein JC et al. (2005) Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology 65:1716–1722PubMedCrossRefGoogle Scholar
  12. 12.
    Hirano S, Shinotoh H, Aotsuka A et al. (2005) In vivo brain acetylcholinesterase activity measurement of cerebellar type multiple system atrophy and Machado-Joseph Disease. Neuroimage 26 (Suppl 1):1555TH-AMGoogle Scholar
  13. 13.
    Hossain AK, Murata Y, Zhang L et al. (2003) Brain perfusion SPECT in patients with corticobasal degeneration: analysis using statistical parametric mapping. Mov Disord 18:697–703PubMedCrossRefGoogle Scholar
  14. 14.
    Im JH, Chung SJ, Kim JS, Lee MC (2006) Differential patterns of dopamine transporter loss in the basal ganglia of progressive supranuclear palsy and Parkinson’s disease: Analysis with [(123)I]IPT single photon emission computed tomography. J Neurol Sci 244:103–109PubMedCrossRefGoogle Scholar
  15. 15.
    Lai SC, Weng YH, Yen TC et al. (2004) Imaging early-stage corticobasal degeneration with [99mTc]TRODAT-1 SPET. Nucl Med Commun 25:339–345PubMedCrossRefGoogle Scholar
  16. 16.
    Laulumaa V, Kuikka JT, Soininen H, Bergström K, Länsimies E, Riekkinen P (1993) Imaging of D2 dopamine receptors of patients with Parkinson’s disease using single photon emission computed tomography and –iodobenzamide I 123. Arch Neurol 50:509–512PubMedGoogle Scholar
  17. 17.
    Litvan I, Phipps M, Pharr VL, Hallett M, Grafman J, Salazar A (2001) Randomized placebo-controlled trial of donepezil in patients with progressive supranuclear palsy. Neurology 57:467–473PubMedGoogle Scholar
  18. 18.
    Okuda B, Tachibana H, Kawabata K, Takeda M, Sugita M (2000) Cerebral blood flow in corticobasal degeneration and progressive supranuclear palsy. Alzheimer Dis Assoc Disord 14:46–52PubMedGoogle Scholar
  19. 19.
    Ouchi Y, Yoshikawa E, Sekine Y et al. (2005) Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol 57:168–175PubMedCrossRefGoogle Scholar
  20. 20.
    Pirker W, Asenbaum S, Bencsits G et al. (2000) [123I]beta-CIT SPECT in multiple system atrophy, progressive supranuclear palsy, and corticobasal degeneration. Mov Disord 15:1158–1167PubMedCrossRefGoogle Scholar
  21. 21.
    Plotkin M, Amthauer H, Klaffke S et al. (2005) Combined 123I-FP-CIT and 123I-IBZM SPECT for the diagnosis of parkinsonian syndromes: study on 72 patients. J Neural Transm 112:677–692PubMedCrossRefGoogle Scholar
  22. 22.
    Sawle GV, Brooks DJ, Marsden CD, Frackowiak RS (1991) Corticobasal degeneration. A unique pattern of regional cortical oxygen hypometabolism and striatal fluorodopa uptake demonstrated by positron emission tomography. Brain 114 (Pt 1B):541–556PubMedGoogle Scholar
  23. 23.
    Schulz JB, Klockgether T, Petersen D et al. (1994) Multiple system atrophy: natural history, MRI morphology, and dopamine receptor imaging with 123IBZM-SPECT J Neurol Neurosurg Psychiatry 57:1047–1056PubMedCrossRefGoogle Scholar
  24. 24.
    Shinotoh H, Namba H, Yamaguchi M et al. (1999) Positron emission tomographic measurement of acetylcholinesterase activity reveals differential loss of ascending cholinergic systems in Parkinson’s disease and progressive supranuclear palsy. Ann Neurol 46:62–69PubMedCrossRefGoogle Scholar
  25. 25.
    Shinotoh H, Namba H, Yamaguchi M et al. (2001) In vivo mapping of brain cholinergic function in Parkinson’s disease and progressive supranuclear palsy. In: Calne D, Calne S (eds) Advances in Neurology. Parkinson’s Disease. Vol. 86; Lippincott Williams and Wilkins, Philadelphia, pp 249–255Google Scholar
  26. 26.
    Shinotoh H, Fukushi K, Nagatsuka S, Irie T (2004) Acetylcholinesterase imaging: its use in therapy evaluation and drug design. Curr Pharm Des 10:1505–1517PubMedCrossRefGoogle Scholar

Copyright information

© Steinkopff-Verlag 2006

Authors and Affiliations

  1. 1.Asahi Hospital for Neurological Diseases and RehabilitationChiba 270–0022Japan
  2. 2.Molecular Imaging Center, National Institute of Radiologcial SciencesChiba 270–0022Japan

Personalised recommendations