Journal of Neurology

, Volume 254, Issue 7, pp 838–845 | Cite as

Regional patterns of cerebral glucose metabolism in spinocerebellar ataxia type 2, 3 and 6

A voxel-based FDG-positron emission tomography analysis
  • P.-S. Wang
  • R.-S. Liu
  • B.-H. Yang
  • B.-W. Soong


The purpose of this study was to investigate the regional patterns of cerebral metabolic deficits by voxel-based FDGPET analysis in patients with distinct spinocerebellar ataxia (SCA) genotypes, including SCA type 2 (SCA2), SCA3, and SCA6. Nine patients with SCA2, 12 with SCA3, seven with SCA6, and 23 healthy control subjects were recruited. The clinical severity of the patients’ cerebellar ataxia was evaluated according to the International Cooperative Ataxia Rating Scale. The brain glucose metabolism was evaluated with 2- [fluorine 18]-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography. Group data were analyzed and compared by voxelbased analysis. In SCA2, FDG utilization was significantly reduced in the cerebellum, pons, parahippocampal gyrus and frontal cortex. In SCA3, FDG metabolism in the cerebellum, parahippocampal gyrus of the limbic system, and lentiform nucleus was decreased. In SCA6, FDG metabolism was diminished in the cerebellum and the frontal and prefrontal cortices. On group comparisons, while all SCAs have impaired cerebellar functions, the cerebellar FDG metabolism was most severely compromised in SCA2. Instead, the FDG metabolism in the lentiform nucleus and medulla was characteristically worst in SCA3. There was no brainstem involvement in SCA6.

Key words

Positron emission tomography spinocerebellar ataxia type 2 spinocerebellar ataxia type 3 spinocerebellar ataxia type 6 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abele M, Burk K, Andres F, et al. (1997) Autosomal dominant cerebellar ataxia type I. Nerve conduction and evoked potential studies in families with SCA1, SCA2 and SCA3. Brain 120:2141–2148CrossRefPubMedGoogle Scholar
  2. 2.
    Bang OY, Huh K, Lee PH, Kim HJ. (2003) Clinical and neuroradiological features of patients with spinocerebellar ataxias from Korean kindreds. Arch Neurol 60:1566–1574CrossRefPubMedGoogle Scholar
  3. 3.
    Boesch SM, Schocke M, Burk K, et al. (2001) Proton magnetic resonance spectroscopic imaging reveals differences in spinocerebellar types 2 and 6. J Magnet Res Imag 13:553–559CrossRefGoogle Scholar
  4. 4.
    Brenneis C, Bosch SM, Schocke M, et al. (2003) Atrophy pattern in SCA2 determined by voxel-based morphometry. Neuroreport 14:1799–1802CrossRefPubMedGoogle Scholar
  5. 5.
    Burk K, Globas C, Bosch S, et al. (1999) Cognitive deficits in spinocerebellar ataxia 2. Brain 122:769–777CrossRefPubMedGoogle Scholar
  6. 6.
    Chen JT, Lin YY, Lee YC, et al. (2004) Prolonged central motor conduction time of lower limb muscles in spinocerebellar ataxia 6. J Clin Neurosci 11:381–383CrossRefPubMedGoogle Scholar
  7. 7.
    Durr A, Smadja D, Cancel G, Lezin A, Stevanin G, Mikol J, Bellance R, Buisson GG, Chneiweiss H, Dellanave J, et al. (1995) Autosomal dominant cerebellar ataxia type I in Martinique (French West Indies). Clinical and neuropathological analysis of 53 patients from three unrelated SCA2 families. Brain 118:1573–81CrossRefPubMedGoogle Scholar
  8. 8.
    Estrada R, Galarraga J, Orozco G, Nodarse A, Auburger G. (1999) Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies. Acta Neuropathol 97:306–10CrossRefPubMedGoogle Scholar
  9. 9.
    Etchebehere EC, Cendes F, Lopes-Cendes I, et al. (2001) Brain single-photon emission computed tomography and magnetic resonance imaging in Machado- Joseph disease. Arch Neurol 58:1257–1263CrossRefPubMedGoogle Scholar
  10. 10.
    Gilman S, Markel DS, Koeppe RA, et al. (1988) Cerebellar and brainstem hypometabolism in olivopontocerebellar atrophy detected with positron emission tomography. Ann Neurol 23:223–230CrossRefPubMedGoogle Scholar
  11. 11.
    Gilman S, Koeppe RA, Junck L, et al. (1994) Patterns of cerebral glucose metabolism detected with positron emission tomography differ in multiple system atrophy and olivopontocerebellar atrophy. Ann Neurol 36:166–175CrossRefPubMedGoogle Scholar
  12. 12.
    Giuffrida S, Saponara R, Restivo DA, et al. (1999) Supratentorial atrophy in spinocerebellar ataxia type 2: MRI study of 20 patients. J Neurol 246:383–388CrossRefPubMedGoogle Scholar
  13. 13.
    Globas C, Bosch S, Zuhlke CH, Daum I, Dichgans J, Burk K. (2003) The cerebellum and cognition. Intellectual function in spinocerebellar ataxia type 6. J Neurol 250:1482–1487CrossRefPubMedGoogle Scholar
  14. 14.
    Gomez CM, Thompson RM, Gammack JT, Perlman SL, Dobyns WB, Truwit CL, Zee DS, Clark HB, Anderson JH. (1997) Spinocerebellar ataxia type 6: gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset. Ann Neurol 42:933–50CrossRefPubMedGoogle Scholar
  15. 15.
    Hayashi T, Nakajima T, Fukuhara N. (2001) Analysis of regional cerebral blood flow and distribution volume in Machado-Joseph disease by iodine)123I IMP single photon emission computed tomography. Rinsho Shinkeigaku - Clin Neurol 41:574–581Google Scholar
  16. 16.
    Kim YK, Lee DS, Lee SK, et al. (2003) Differential features of metabolic abnormalities between medial and lateral temporal lobe epilepsy: quantitative analysis of (18)F-FDG PET using SPM. J Nucl Med 44:1006–1012PubMedGoogle Scholar
  17. 17.
    Kuhl DE, Phelps ME, Markham CH, et al. (1982) Cerebral metabolism and atrophy in Huntington’s disease determined by 18FDG and computed tomographic scan. Ann Neurol 12:425–434CrossRefPubMedGoogle Scholar
  18. 18.
    Lee YC, Chen JT, Liao KK, Wu ZA, Soong BW. (2003) Prolonged cortical relay time and central motor conduction in patients with spinocerebellar ataxia type 6. Clin Neurophysiol 114:458–462CrossRefPubMedGoogle Scholar
  19. 19.
    Leenders KL, Palmer AJ, Quinn N, et al. (1986) Brain dopamine metabolism in patients with Parkinson’s disease measured with positron emission tomography. J Neurol Neurosurg Psychiatr 49:853–860CrossRefPubMedGoogle Scholar
  20. 20.
    Murata Y, Yamaguchi S, Kawakami H, et al. (1998) Characteristic magnetic resonance imaging findings in Machado- Joseph disease. Arch Neurol 55:33–37CrossRefPubMedGoogle Scholar
  21. 21.
    Nestor PJ, Graham NL, Fryer TD, Williams GB, Patterson K, Hodges JR. (2003) Progressive non-fluent aphasia is associated with hypometabolism centred on the left anterior insula. Brain 126:2406–2418CrossRefPubMedGoogle Scholar
  22. 22.
    Otsuka M, Ichiya Y, Kuwabara Y, et al. (1989) Cerebral blood flow, oxygen and glucose metabolism with PET in progressive supranuclear palsy. Ann Nucl Med 3:111–118CrossRefPubMedGoogle Scholar
  23. 23.
    Poline JB, Worsley KJ, Holmes AP, et al. (1995) Estimating smoothness in statistical parametric maps: variability of p values. J Comput Assist Tomogr 19:788–796CrossRefPubMedGoogle Scholar
  24. 24.
    Salmon E, Collette F, Degueldre C, Lemaire C, Franck G (2000) Voxelbased analysis of confounding effects of age and dementia severity on cerebral metabolism in Alzheimer’s disease. Hum Brain Mapp 10:39–48CrossRefPubMedGoogle Scholar
  25. 25.
    Schols L, Peters S, Szymanski S, et al. (2000) Extrapyramidal motor signs in degenerative ataxias. Arch Neurol 57:1495–1500CrossRefPubMedGoogle Scholar
  26. 26.
    Schwenkreis P, Tegenthoff M, Witscher K, et al. (2002) Motor cortex activation by transcranial magnetic stimulation in ataxia patients depends on the genetic defect. Brain 125:301–309CrossRefPubMedGoogle Scholar
  27. 27.
    Shinotoh H, Thiessen B, Snow BJ, et al. (1997) Fluorodopa and raclopride PET analysis of patients with Machado-Joseph disease. Neurology 49:1133–1136PubMedGoogle Scholar
  28. 28.
    Soong B, Cheng C, Liu R, Shan D (1997) Machado-Joseph disease: clinical, molecular, and metabolic characterization in Chinese kindreds. Ann Neurol 41:446–452CrossRefPubMedGoogle Scholar
  29. 29.
    Soong BW, Liu RS (1998) Positron emission tomography in asymptomatic gene carriers and patients with Machado- Joseph disease. J Neuro Neurosurg Psychiatr 64:499–504CrossRefGoogle Scholar
  30. 30.
    Soong BW, Lu YC, Choo KB, Lee HY (2001) Frequency analysis of autosomal dominant cerebellar ataxias in Taiwanese patients and clinical and molecular characterization of spinocerebellar ataxia type 6. Arch Neurol 58:1105–1109CrossRefGoogle Scholar
  31. 31.
    Soong B, Liu R, Wu L, et al. (2001) Metabolic characterization of spinocerebellar ataxia type 6. Arch Neurol 58:300–304CrossRefPubMedGoogle Scholar
  32. 32.
    Storey E, Forrest SM, Shaw JH, et al. (1999) Spinocerebellar ataxia type 2: clinical features of a pedigree displaying prominent frontal-executive dysfunction. Arch Neurol 56:43–50CrossRefPubMedGoogle Scholar
  33. 33.
    Takahashi H, Ikeuchi T, Honma Y, Hayashi S, Tsuji S (1998) Autosomal dominant cerebellar ataxia (SCA6): clinical, genetic and neuropathological study in a family. Acta Neuropathol 95:333–7CrossRefPubMedGoogle Scholar
  34. 34.
    Takiyama Y, Oyanagi S, Kawashima S, Sakamoto H, Saito K, Yoshida M, Tsuji S, Mizuno Y, Nishizawa M (1994) A clinical and pathologic study of a large Japanese family with Machado-Joseph disease tightly linked to the DNA markers on chromosome 14q. Neurology 44:1302–8PubMedGoogle Scholar
  35. 35.
    Talairach J, Tournoux P (1988) Coplanar stereotaxic atlas of the human brain 3-dimensional proportional system: an approach to cerebral imaging. New York: Thiemen MedicalGoogle Scholar
  36. 36.
    Tang B, Liu C, Shen L, et al. (1997) Frequency of SCA1, SCA2, SCA3/MJD, SCA6, SCA7, and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds. Arch Neurol 57:540–544CrossRefGoogle Scholar
  37. 37.
    Taniwaki T, Sakai T, Kobayashi T, et al. (1997) Positron emission tomography (PET) in Machado-Joseph disease. J Neurol Sci 145:63–67CrossRefPubMedGoogle Scholar
  38. 38.
    Trouillas P, Takayanagi T, Hallett M, et al. (1997) International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci 145:205–211CrossRefPubMedGoogle Scholar
  39. 39.
    Varrone A, Salvatore E, De Michele G, et al. (2004) Reduced striatal [123 I]FPCIT binding in SCA2 patients without parkinsonism. Ann Neurol 55:426–430CrossRefPubMedGoogle Scholar
  40. 40.
    Wullner U, Reimold M, Abele M, Burk K, Minnerop M, Dohmen BM, Machulla HJ, Bares R, Klockgether T (2005) Dopamine transporter positron emission tomography in spinocerebellar ataxias type 1, 2, 3, and 6. Arch Neurol 62:1280–5CrossRefPubMedGoogle Scholar
  41. 41.
    Zawacki TM, Grace J, Friedman JH, Sudarsky L (2002) Executive and emotional dysfunction in Machado-Joseph disease. Mov Disord 17:1004–1010CrossRefPubMedGoogle Scholar

Copyright information

© Steinkopff-Verlag 2007

Authors and Affiliations

  • P.-S. Wang
    • 1
    • 2
    • 3
  • R.-S. Liu
    • 4
  • B.-H. Yang
    • 4
  • B.-W. Soong
    • 1
    • 2
    • 5
  1. 1.The Neurological InstituteTaipei Veterans General Hospital Taiwan
  2. 2.Dept. of NeurologyNational Yang-Ming University School of MedicineTaipeiTaiwan
  3. 3.Dept. of NeurologyTaipei Municipal Gan-Dau HospitalTaiwan
  4. 4.Dept. of Nuclear MedicineNational PET/Cyclotron Center, Taipei Veterans General HospitalTaiwan
  5. 5.The Neurological InstituteTaipei Veterans General HospitalTaipeiTaiwan

Personalised recommendations