Journal of Neurology

, 254:722 | Cite as

Topographic brain mapping of the international cooperative ataxia rating scale

A positron emission tomography study
  • Po-Shan Wang
  • Ren-Shyan Liu
  • Bang-Hung Yang
  • Bing-Wen Soong
ORIGINAL COMMUNICATION

Abstract

The International Cooperative Ataxia Rating Scale (ICARS) is a 100-point semiquantitative scale designed primarily to assess cerebellar dysfunction. However, little is known of the metric properties of this scale. We assessed the ICARS by rating the severity of cerebellar dysfunction in 27 patients with spinocerebellar ataxias (SCA), three patients with sporadic olivopontocerebellar ataxia and 24 healthy control subjects. [18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) study was also performed on each subject. The statistical parametric mapping analyses revealed a significant correlation between the ICARS scores and functional impairment of the frontal regions within SCA patients. The glucose metabolism in the cerebellum, thalamus and caudate nucleus had significant differences between SCA patients and healthy control subjects. The results suggested that the clinical severity of SCA patients correlated with the functional impairment in the frontal regions, the targets of cerebellar efferent projections.

Key words

positron emission tomography spinocerebellar ataxias ICARS 

References

  1. 1.
    Brenneis C, Bosch SM, Schocke M, Wenning GK, Poewe W (2003) Atrophy pattern in SCA2 determined by voxel-based morphometry. Neuroreport 14:1799–1802CrossRefPubMedGoogle Scholar
  2. 2.
    Cui DM, Yan YJ, Lynch JC (2003) Pursuit subregion of the frontal eye field projects to the caudate nucleus in monkeys. J Neurophysiol 89:2678–2684CrossRefPubMedGoogle Scholar
  3. 3.
    Day BL, Thompson PD, Harding AE, Marsden CD (1998) Influence of vision on upper limb reaching movements in patients with cerebellar ataxia. Brain 121:357–372CrossRefPubMedGoogle Scholar
  4. 4.
    DeLong MR, Alexander GE, Georgopoulos AP, Crutcher MD, Mitchell SJ, Richardson RT (1984) Role of basal ganglia in limb movements. Hum Neurobiol 235–244Google Scholar
  5. 5.
    Deniau JM, Kita H, Kitai ST (1992) Patterns of termination of cerebellar and basal ganglia efferents in the rat thalamus. Strictly segregated and partly overlapping projections. Neurosci Lett 144:202–206CrossRefPubMedGoogle Scholar
  6. 6.
    Ettinger U, Kumari V, Chitnis XA, Corr PJ, Sumich AL, Rabe-Hesketh S, Crawford TJ, Sharma T (2002) Relationship between brain structure and saccadic eye movements in healthy humans. Neurosci Lett 328:225–228CrossRefPubMedGoogle Scholar
  7. 7.
    Friston KJ, Holmes AP, Worsley KJ, Poline JP, Firith CD, Frackowiak RSJ (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210CrossRefGoogle Scholar
  8. 8.
    Furman JMR, Baloh RW, Yee RD (1986) Eye movement abnormalities in a family with cerebellar vermian atrophy. Acta Otolaryngol 101:371–377CrossRefPubMedGoogle Scholar
  9. 9.
    Fukuyama H, Ouchi Y, Matsuzaki S, Nagahama Y, Yamauchi H, Ogawa M, Kimura J, Shibasaki H (1997) Brain functional activity during gait in normal subjects: a SPECT study. Neurosci Lett 228:183–186CrossRefPubMedGoogle Scholar
  10. 10.
    Gerardin E, Lehericy S, Pochon JB, Tezenas du Montcel S, Mangin JF, Poupon F, Agid Y, Le Bihan D, Marsault C (2003) Foot, hand, face and eye representation in the human striatum. Cereb Cortex 13:162–169CrossRefPubMedGoogle Scholar
  11. 11.
    Inagaki A, Iida A, Matsubara M, Inagaki H (2005) Positron emission tomography and magnetic resonance imaging in spinocerebellar ataxia type 2: a study of symptomatic and asymptomatic individuals. Eur J Neurol 12:725–8CrossRefPubMedGoogle Scholar
  12. 12.
    Jeffries KJ, Fritz JB, Braun AR (2003) Words in melody: an H2 15O PET study of brain activation during singing and speaking. Neuroreport 14:749–754CrossRefPubMedGoogle Scholar
  13. 13.
    Kim YK, Lee DS, Lee SK, Kim SK, Chung CK, Chang KH, Choi KY, Chung JK, Lee MC (2003) Differential features of metabolic abnormalities between medial and lateral temporal lobe epilepsy: quantitative analysis of (18)FFDG PET using SPM. J Nucl Med 44:1006–1012PubMedGoogle Scholar
  14. 14.
    Marien P, Engelborghs S, Fabbro F, De Deyn PP (2001) The lateralized linguistic cerebellum: a review and a new hypothesis. Brain Lang 79:580–600CrossRefPubMedGoogle Scholar
  15. 15.
    Middleton FA, Strick PL (1997) Cerebellar output channels. Int Rev Neurobiol 41:61–82CrossRefPubMedGoogle Scholar
  16. 16.
    Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, Tsunazawa Y, Suzuki T, Yanagida T, Kubota K (2001) Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage 14:1186–1192CrossRefPubMedGoogle Scholar
  17. 17.
    Riecker A, Ackermann H, Wildgruber D, Dogil G, Grodd W (2000) Opposite hemispheric lateralization effects during speaking and singing at motor cortex, insula and cerebellum. Neuroreport 11:1997–2000CrossRefPubMedGoogle Scholar
  18. 18.
    Rub U, Del Turco D, Del Tredici K, de Vos RA, Brunt ER, Reifenberger G, Seifried C, Schultz C, Auburger G, Braak H. (2003) Thalamic involvement in a spinocerebellar ataxia type 2 (SCA2) and a spinocerebellar ataxia type 3 (SCA3) patient, and its clinical relevance. Brain 126:2257–72CrossRefPubMedGoogle Scholar
  19. 19.
    Salmon E, Collette F, Degueldre C, Lemaire C, Franck G (2000) Voxel-based analysis of confounding effects of age and dementia severity on cerebral metabolism in Alzheimer’s disease. Hum Brain Mapp 10:39–48CrossRefPubMedGoogle Scholar
  20. 20.
    Shibasaki H, Fukuyama H, Hanakawa T (2004) Neural control mechanisms for normal versus parkinsonian gait. Prog Brain Res 143:199–205CrossRefPubMedGoogle Scholar
  21. 21.
    Soong BW, Liu RS (1998) Positron emission tomography in asymptomatic gene carriers of Machado-Joseph disease. J Neurol Neurosurg Psychiatry 64:499–504CrossRefPubMedGoogle Scholar
  22. 22.
    Talairach J, Tournoux P (1988) Coplanar stereotaxic atlas of the human brain 3-dimensional proportional system: an approach to cerebral imaging. New York, Thiemen MedicalGoogle Scholar
  23. 23.
    Thach WT, Bastian AJ (2004) Role of the cerebellum in the control and adaptation of gait in health and disease. Prog Brain Res 143:353–366CrossRefPubMedGoogle Scholar
  24. 24.
    Thier P, Dicke PW, Haas R, Thielert CD, Catz N (2002) The role of the oculomotor vermis in the control of saccadic eye movements. Ann N Y Acad Sci 978:50–62CrossRefPubMedGoogle Scholar
  25. 25.
    Thier P, Haarmeier T, Treue S, Barash S (1999) Absence of a common functional denominator of visual disturbances in cerebellar disease. Brain 122:2133–2146CrossRefPubMedGoogle Scholar
  26. 26.
    Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, Bryer A, Diener HC, Massaquoi S, Gomez CM, Coutinho P, Ben Hamida M, Campanella G, Filla A, Schut L, Timann D, Honnorat J, Nighoghossian N, Manyam B (1997) International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci 145:205–211CrossRefPubMedGoogle Scholar
  27. 27.
    Watanabe K, Lauwereyns J, Hikosaka O (2003) Neural correlates of rewarded and unrewarded eye movements in the primate caudate nucleus. J Neurosci 5(23):10052–10057Google Scholar

Copyright information

© Steinkopff-Verlag 2007

Authors and Affiliations

  • Po-Shan Wang
    • 1
    • 2
    • 3
  • Ren-Shyan Liu
    • 4
  • Bang-Hung Yang
    • 4
  • Bing-Wen Soong
    • 1
    • 2
  1. 1.The Neurological InstituteTaipei Veterans General HospitalTaipeiTaiwan 11217
  2. 2.Dept. of NeurologyNational Yang-Ming University School of MedicineTaipeiTaiwan
  3. 3.Dept. of NeurologyTaipei Municipal Gan-Dau HospitalTaipeiTaiwan
  4. 4.Dept. of Nuclear Medicine, National PET/Cyclotron CenterTaipei Veterans General HospitalTaipeiTaiwan

Personalised recommendations