Journal of Neurology

, Volume 253, Issue 10, pp 1347–1355 | Cite as

Subthalamic nucleus stimulation in Parkinson’s disease

Anatomical and electrophysiological localization of active contacts
  • F. Godinho
  • S. Thobois
  • M. Magnin
  • M. Guenot
  • G. Polo
  • I. Benatru
  • J. Xie
  • A. Salvetti
  • L. Garcia-Larrea
  • E. Broussolle
  • P. Mertens
ORIGINAL COMMUNICATION

Abstract

Objectives

1 - To assess the anatomical localization of the active contacts of deep brain stimulation targeted to the subthalamic nucleus (STN) in Parkinson’s disease patients. 2 - To analyze the stereotactic spatial distribution of the active contacts in relation to the dorsal and the ventral electrophysiologically-defined borders of the STN and the stereotactic theoretical target.

Methods

Twenty-eight patients underwent bilateral high-frequency stimulation of the STN (HFS-STN). An indirect anatomical method based on ventriculography coupled to electrophysiological techniques were used to localize the STN. Clinical improvement was evaluated by Unified Parkinson’s Disease Rating Scale motor score (UPDRS III). The normalized stereotactic coordinates of the active contact centres, dorsal and ventral electrophysiologically-defined borders of the STN were obtained from intraoperative X-rays images. These coordinates were represented in a three-dimensional stereotactic space and in the digitalized atlas of the human basal ganglia.

Results

HFS-STN resulted in significant improvement of motor function (62.8%) in off-medication state and levodopa-equivalent dose reduction of 68.7% (p < 0.05). Most of the active contacts (78.6%) were situated close to (± 1.6 mm) the dorsal border of the STN (STN-DB), while 16% were dorsal and 5.4% were ventral to it. Similar distribution was observed in the atlas. The euclidean distance between the STN-DB distribution center and the active contacts distribution center was 0.31 mm, while the distance between the active contacts distribution center and the stereotactic theoretical target was 2.15 mm. Most of the space defined by the active contacts distribution (53%) was inside that defined by the STN-DB distribution.

Conclusion

In our series, most of the active electrodes were situated near the STN-DB. This suggests that HFS-STN could influence not only STN but also the dorsal adjacent structures (zona incerta and/or Fields of Forel).

Keywords

Parkinson’s disease deep brain stimulation basal ganglia subthalamic nucleus zona incerta 

References

  1. 1.
    Abosch A, Hutchison WD, Saint-Cyr JA, Dostrovsky JO, Lozano AM (2002) Movement-related neurons of the subthalamic nucleus in patients with Parkinson disease. J Neurosurg 97:1167–1172PubMedGoogle Scholar
  2. 2.
    Ashby P, Kim YJ, Kumar R, Lang AE, Lozano AM (1999) Neurophysiological effects of stimulation through electrodes in the human subthalamic nucleus. Brain 122:1919–1931PubMedCrossRefGoogle Scholar
  3. 3.
    Aziz TZ, Peggs D, Sambrook MA, Crossman AR (1991) Lesion of the subthalamic nucleus for the alleviation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the primate. Mov Disord 6:288–292PubMedCrossRefGoogle Scholar
  4. 4.
    Benabid AL, Pollak P, Gross C, Hoffmann D, Benazzouz A, Gao DM, Laurent A, Gentil M, Perret J (1994) Acute and long-term effects of subthalamic nucleus stimulation in Parkinson’s disease. Stereotact Funct Neurosurg 62:76–84PubMedGoogle Scholar
  5. 5.
    Benabid AL, Koudsie A, Benazzouz A, Le Bas JF, Pollak P (2002) Imaging of subthalamic nucleus and ventralis intermedius of the thalamus. Mov Disord 17:S123–S129PubMedCrossRefGoogle Scholar
  6. 6.
    Benazzouz A, Hallett M (2000) Mechanism of action of deep brain stimulation. Neurology 55:S13–S16PubMedGoogle Scholar
  7. 7.
    Benazzouz A, Tai CH, Meissner W, Bioulac B, Bezard E, Gross C (2004) High-frequency stimulation of both zona incerta and subthalamic nucleus induces a normalization of basal ganglia metabolic activity in experimental parkinsonism. Faseb J 18:528–530PubMedGoogle Scholar
  8. 8.
    Bergman H, Wichmann T, De Long MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249:1436–1438PubMedCrossRefGoogle Scholar
  9. 9.
    Bevan MD, Wilson CJ (1999) Mechanisms underlying spontaneous oscillation and rhythmic firing in rat subthalamic neurons. J Neurosci 19:7617–7628PubMedGoogle Scholar
  10. 10.
    Bourgeois G, Magnin M, Morel A, Sartoretti S, Huisman T, Tuncdogan E, Meier J, Jeanmonod D (1999) Accuracy of MRI-guided stereotactic thalamic functional neurosurgery. Neuroradiology 41:636–645PubMedCrossRefGoogle Scholar
  11. 11.
    De Long MR, Georgopoulos AP (1985) Primate globus pallidus and subthalamic nucleus: functional organization. J Neurophysiol 53:530–543Google Scholar
  12. 12.
    De Long MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285CrossRefGoogle Scholar
  13. 13.
    Deep-Brain Stimulation for Parkinson’s Disease Study Group (2001) Deep-Brain Stimulation of the Subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med 345:956–963CrossRefGoogle Scholar
  14. 14.
    Dostrovsky JO, Levy R, Wu JP, Hutchison WD, Tasker RR, Lozano AM (2000) Microstimulation-induced inhibition of neuronal firing in human globus pallidus. J Neurophysiol 84:570–574PubMedGoogle Scholar
  15. 15.
    Dostrovsky JO, Lozano AM (2002) Mechanisms of deep brain stimulation. Mov Disord 3:S63–S68CrossRefGoogle Scholar
  16. 16.
    Fahn S, Elton RL, UPDRS Development Committee (1987) The unified Parkinson’s disease rating scale. In: Fahn S, Marsden CD, Calne D, et al. (eds) Recent developments in Parkinson’s disease. Vol 2. Florham Park, NJ: MacMillan Healthcare Information, 153–163Google Scholar
  17. 17.
    Fahn S, (1997) Levodopa-induced neurotoxicity: does it represent a problem for the treatment of Parkinson’s disease? CNS Drugs 8:376–393Google Scholar
  18. 18.
    Filali M, Hutchison WD, Palter VN, Lozano AM, Dostrovsky JO (2004) Stimulation-induced inhibition of neuronal firing in subthalamic nucleus. Exp Brain Res 156:274–281PubMedCrossRefGoogle Scholar
  19. 19.
    Garcia L, Audin J, D’Alessandro G, Bioulac B, Hammond C (2003) Dual Effect of high-frequency stimulation on subthalamic neuron activity. J Neurosc 24:8743–8751Google Scholar
  20. 20.
    Georgopoulos AP, De Long MR, Crutcher MD (1983) Relations between parameters of step-tracking movements and single cell discharge in the globus pallidus and subthalamic nucleus of the behaving monkey. J Neurosc 3:1586–1598Google Scholar
  21. 21.
    Guiot G, Arfel G, Derôme P (1968) La chirurgie stéreotaxique des tremblements de repos et d’attitude. Gaz Med France 75:4029–4056Google Scholar
  22. 22.
    Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano AM (2003) The subthalamic nucleus in the context of movement disorders. Brain 127:4–20PubMedCrossRefGoogle Scholar
  23. 23.
    Hamel W, Fietzek U, Morsnowski A, Schrader B, Herzog J, Weinert D, Pfister G, Müller D, Volkmann J, Deuschl G, Mehdorn HM (2003) Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: evaluation of active electrode contacts. J Neurol Neurosurg Psychiatry 74:1036–1046PubMedCrossRefGoogle Scholar
  24. 24.
    Hariz MI, Bergenheim AT, Fodstad H (1993) Air-ventriculography provokes an anterior displacement of the third ventricle during functional stereotactic procedures. Acta Neurochir (Wien) 1993;123(3–4):147–52Google Scholar
  25. 25.
    Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL (2003) Stimulation of the subthalamic nucleus change the firing pattern of pallidal neurons. J Neurosci 23:1916–1923PubMedGoogle Scholar
  26. 26.
    Heise CE, Mitrofanis J (2004) Evidence for a glutamatergic projection from the zona incerta to the basal ganglia of rats. J Comp Neurol 468:482–495PubMedCrossRefGoogle Scholar
  27. 27.
    Herzog J, Volkmann J, Krack P, Kopper F, Potter M, Lorenz D, Steinbach M, Klebe S, Hamel W, Schrader B, Weinert D, Muller D, Mehdorn HM, Deuschl G (2003). Two-year follow-up of subthalamic deep brain stimulation in Parkinson’s disease. Mov Disord 18:1332–1337PubMedCrossRefGoogle Scholar
  28. 28.
    Hutchison WD, Allan RJ, Optiz H, Levy R, Dostrovsky JO, Lang AE, Lozano AM (1998) Neurophysiological Identification of the Subthalamic Nucleus in Surgery for Parkinson’s Disease. Ann Neurol 44:622–628PubMedCrossRefGoogle Scholar
  29. 29.
    Jones EG, Wise SP, Coulter JD (1979) Differential thalamic relationships of sensory-motor and parietal cortical fields in monkeys. J Comp Neurol 183:833–881PubMedCrossRefGoogle Scholar
  30. 30.
    Krack P, Batir A, Van Blercom N, et al (2003) Five-Year Follow-up of Bilateral Stimulation of the Subthalamic Nucleus in Advanced Parkinson’s Disease. N Engl J Med 349:1925–1934PubMedCrossRefGoogle Scholar
  31. 31.
    Krack P, Benazzouz A, Pollak P, Limousin P, Piallat B, Hoffmann D, Xie J, Benabid AL (1998) Treatment of tremor in Parkinson’s disease by subthalamic nucleus stimulation. Mov Disord 13:907–914PubMedCrossRefGoogle Scholar
  32. 32.
    Kumar R, Lozano AM, Kim YJ, Hutchison WD, Sime E, Halket E, Lang AE (1998) Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson’s disease. Neurology 51:850–855PubMedGoogle Scholar
  33. 33.
    Künzle H (1976) Thalamic projections from the precentral motor cortex in Macaca fascicularis. Brain Res 105:253–267PubMedCrossRefGoogle Scholar
  34. 34.
    Lanotte MM, Rizzone M, Bergamasco B, Faccani G, Melcarne A, Lopiano L (2002) Deep brain stimulation of the subthalamic nucleus: anatomical, neurophysiological, and outcome correlations with the effects of stimulation. J Neurol Neurosurg Psychiatry 72:53–58PubMedCrossRefGoogle Scholar
  35. 35.
    Leichnetz GR (1986) Afferent and efferent connections of the dorsolateral precentral gyrus (area 4, hand/arm region) in the macaque monkey, with comparisons to area 8. J Comp Neurol 254:460–492PubMedCrossRefGoogle Scholar
  36. 36.
    Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C, Hoffmann D, Benabid AL (1998) Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 339:1105–1111PubMedCrossRefGoogle Scholar
  37. 37.
    Lin CS, Nicolelis MA, Schneider JS, Chaplin JK Jr (1991) GABAergic pathway from zona incerta to neocortex: clarification. Science 251:1162PubMedGoogle Scholar
  38. 38.
    Lopez-Flores G, Miguel-Morales J, Teijeiro-Amador J, Vitek J, Perez-Parra S, Fernandez-Melo R, Maragoto C, Alvarez E, Alvarez L, Macias R, Obeso JA (2003) Anatomic and neurophysiological methods for the targeting and lesioning of the subthalamic nucleus: Cuban experience and review. Neurosurgery 52:817–830; discussion, 831PubMedCrossRefGoogle Scholar
  39. 39.
    Magnin M, Morel A, Jeanmonod D (2000) Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients. Neuroscience 96:549–564PubMedCrossRefGoogle Scholar
  40. 40.
    Magnin M, Jeanmonod D, Morel A, Siegemund M (2001) Surgical control of the human thalamocortical dysrhythmia: II. Pallidothalamic tractotomy in Parkinson’s disease. Thalamus and Related System 1:81–89Google Scholar
  41. 41.
    Magnin M, Jetzer U, Morel A, Jeanmonod D (2001) Microelectrode recording and macrostimulation in thalamic and subthalamic MRI guided stereotactic surgery. Neurophysiol Clin 31:230–238PubMedCrossRefGoogle Scholar
  42. 42.
    Margarinos-Ascone CM, Figueiras-Mendez R, Riva-Meana C, Cordoba-Fernandez A (2000) Subthalamic neuron activity related to tremor and movement in Parkinson’s disease. Eur J Neurosci 12: 2597–2606CrossRefGoogle Scholar
  43. 43.
    McIntyre CC, Grill WM (2000) Selective microstimulation of central nervous system neurons. Ann Biomed Eng 28:219–233PubMedCrossRefGoogle Scholar
  44. 44.
    McIntyre CC, Mori S, Sherman DL, Thakor NV, Vitek JL (2004) Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin Neurophysiol 115:589–595PubMedCrossRefGoogle Scholar
  45. 45.
    McIntyre CC, Savasta M, Kerkerian-Le Goff L, Vitek JL (2004) Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol 115:1239–1248PubMedCrossRefGoogle Scholar
  46. 46.
    Monakow KH, Akert K, Kunzle H (1978) Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Exp Brain Res 33:395–403PubMedCrossRefGoogle Scholar
  47. 47.
    Morel A, Magnin M, Jeanmonod D (1997) Multiarchitectonic and stereotactic atlas of the human thalamus (published erratum in J Comp Neurol 1998;391:545). J Comp Neurol 387:588–630PubMedCrossRefGoogle Scholar
  48. 48.
    Mundinger F (1965) Stereotaxic interventions on the zona incerta area for treatment of extrapyramidal motor disturbances and their results. Confinia Neurologica (Basel) 26:222–230Google Scholar
  49. 49.
    Nambu A, Takada M, Inase M, Tokuno H (1996) Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J Neurosci 16:2671–2683PubMedGoogle Scholar
  50. 50.
    Nambu A, Tokuno H, Inase M, Takada M (1997) Corticosubthalamic input zones from forelimb representations of the dorsal and ventral divisions of the premotor cortex in the macaque monkey: comparison with the input zones from the primary motor cortex and the supplementary motor area. Neurosci Lett 239:13–16PubMedCrossRefGoogle Scholar
  51. 51.
    Nicolelis MA, Chapin JK, Lin RC (1992) Somatotopic maps within the zona incerta relay parallel GABAergic somatosensory pathways to the neocortex, superior colliculus, and brainstem. Brain Res 577:134–141PubMedCrossRefGoogle Scholar
  52. 52.
    Oerthel WH, Tappaz ML, Berod A, Mugnaini E (1982) Two-color immunohistochemistry for dopamine and GABA neurons in rat substantia nigra and zona incerta. Brain Res Bull 9:463–474CrossRefGoogle Scholar
  53. 53.
    Pahapill AP, Lozano AM (2000) The pedunculopontine nucleus and Parkinson disease. Brain 123:1767–1783PubMedCrossRefGoogle Scholar
  54. 54.
    Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20:91–127PubMedCrossRefGoogle Scholar
  55. 55.
    Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Brain Res Rev 20:128–154PubMedCrossRefGoogle Scholar
  56. 56.
    Périer C, Vila M, Féger J, Agid Y, Hirsch EC (2000) Functional activity of zona incerta neurons is altered after nigrostriatal denervation in hemiparkinsonian rats. Exp Neurol 162:215–224PubMedCrossRefGoogle Scholar
  57. 57.
    Périer C, Tremblay L, Féger J, Hirsch EC (2002) Behavioral consequences of bicuculline injection in the subthalamic nucleus and the zona incerta in rat. J Neurosc 22:8711–8719Google Scholar
  58. 58.
    Pollak P, Benabid AL, Gross C, Laurent A, Benazzouz A, Hoffmann D, Gentil M, Perret J (1993) Effects of the stimulation of the subthalamic nucleus in Parkinson disease. Rev Neurol (Paris) 149:175–176Google Scholar
  59. 59.
    Pollak P, Krack P, Fraix V, Mendes A, Moro E, Chabardes S, Benabid AL (2002) Intraoperative micro- and macrostimulation of the subthalamic nucleus in Parkinson’s disease. Mov Disord 17:S155–S161PubMedCrossRefGoogle Scholar
  60. 60.
    Power BD, Mitrofanis J (2001) Zona incerta: substrate for contralateral interconnectivity in the thalamus of rats. J Comp Neurol 436:52–63PubMedCrossRefGoogle Scholar
  61. 61.
    Ranck JB Jr (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98:417–440PubMedCrossRefGoogle Scholar
  62. 62.
    Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE (2000) A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. 056 Study Group. N Engl J Med 342:1484–1491PubMedCrossRefGoogle Scholar
  63. 63.
    Ricardo JA (1981) Efferent connections of the subthalamic region in the rat II. The zona incerta. Brain Res 214:43–60PubMedCrossRefGoogle Scholar
  64. 64.
    Rodriguez MC, Guridi OJ, Alvarez L, Mewes K, Macias R, Vitek J, DeLong MR, Obeso JA (1998) The subthalamic nucleus and tremor in Parkinson’s disease. Mov Disord 13:S111–S118CrossRefGoogle Scholar
  65. 65.
    Rodriguez-Oroz MC, Rodriguez M, Guridi J, Mewes K, Chockkman V, Vitek J, DeLong MR, Obeso JA (2001) The subthalamic nucleus in Parkinson’s disease: somatotopic organization and physiological characteristics. Brain 124:1777–1790PubMedCrossRefGoogle Scholar
  66. 66.
    Rodriguez-Oroz MC, Zamarbide I, Guridi J, Palmero MR, Obeso JA (2004) Efficacy of deep brain stimulation of the subthalamic nucleus in Parkinson’s disease 4 years after surgery: double blind and open label evaluation. J Neurol Neurosurg Psychiatry 75:1382–1385PubMedCrossRefGoogle Scholar
  67. 67.
    Saint-Cyr JA, Hoque T, Pereira LC, Dostrovsky JO, Hutchison WD, Mikulis DJ, Abosch A, Sime E, Lang AE, Lozano AM (2002) Localization of clinically effective stimulating electrodes in the human subthalamic nucleus on magnetic resonance imaging. J Neurosurg 97:1152–1166PubMedCrossRefGoogle Scholar
  68. 68.
    Schaltenbrand G, Wahren W, Hassler RG (1977) Atlas for Stereotaxy of the Human Brain, 2nd edn. Stuttgart: ThiemeGoogle Scholar
  69. 69.
    Shaw VE, Mitrofanis J (2002) Lamination of spinal cells projecting to the zona incerta in rats. J Neurocytol 30:695–704CrossRefGoogle Scholar
  70. 70.
    Spiegel EA, Wycis HT, Szekely EG, Adams J, Flanagan M, Baird HW (1963) Campotomy in various extrapyramidal disorders. Studies in stereoencephalotomy. Cushing Society, Philadelphia 871–884Google Scholar
  71. 71.
    Starr PA, Christine CW, Theodosopoulos PV, Lindsey N, Byrd D, Mosley A, Marks WJ Jr (2002) Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verified lead locations. J Neurosurg 97:370–387PubMedGoogle Scholar
  72. 72.
    Sterio D, Zonenshayn M, Mogilner AY, Rezai AR, Kiprovski K, Kelly PJ, Beric A (2002) Neurophysiological refinement of subthalamic nucleus targeting. Neurosurgery 50:58–67PubMedCrossRefGoogle Scholar
  73. 73.
    Talairach J, David M, Tournoux P (1957) Atlas d’Anatomie Stéréotaxique des Noyaux Gris Centraux. Masson, ParisGoogle Scholar
  74. 74.
    Thobois S, Mertens P, Guenot M, Hermier M, Mollion H, Bouvard M, Chazot G, Broussole E, Sindou M (2002) Subthalamic nucleus stimulation in Parkinson’s disease: clinical evaluation of 18 patients. J Neurol 249:529–534PubMedCrossRefGoogle Scholar
  75. 75.
    Thobois S, Corvaisier S, Mertens P, Di Guardo C, Mollion H, Guenot M, Rochefort F, Chazot G, Sindou M, Broussolle E (2003) The timing of antiparkinsonian treatment reduction after subthalamic nucleus stimulation. Eur Neurol 49:59–63PubMedCrossRefGoogle Scholar
  76. 76.
    Vitek JL (2002) Mechanisms of deep brain stimulation: excitation or inhibition. Mov Disord 17:S369–S372Google Scholar
  77. 77.
    Voges J, Volkmann J, Allert N, Lehrke R, Koulousakis A, Freund H-J, Sturm V (2002) Bilateral high-frequency stimulation in the subthalamic nucleus for the treatment of Parkinson disease: correlation of therapeutic effect with anatomical electrode position. J Neurosurg 96:269–279PubMedGoogle Scholar
  78. 78.
    Welter ML, Houeto JL, Bonnet AM, Bejjani PB, Mesnage V, Dormont D, Navarro S, Cornu P, Agid Y, Pidoux B (2004) Effects of high-frequency stimulation on subthalamic neuronal activity in parkinsonian patients. Arch Neurol 61:89–96PubMedCrossRefGoogle Scholar
  79. 79.
    Zonenshayn M, Rezai AR, Mogilner AY, Beric A, Sterio D, Kelly PJ (2000) Comparison of anatomic and neurophysiological methods for subthalamic nucleus targeting. Neurosurgery 47:282–292PubMedCrossRefGoogle Scholar

Copyright information

© Steinkopff Verlag Darmstadt 2006

Authors and Affiliations

  • F. Godinho
    • 1
    • 3
  • S. Thobois
    • 2
  • M. Magnin
    • 3
  • M. Guenot
    • 1
  • G. Polo
    • 1
  • I. Benatru
    • 2
  • J. Xie
    • 2
  • A. Salvetti
    • 5
  • L. Garcia-Larrea
    • 3
  • E. Broussolle
    • 2
  • P. Mertens
    • 1
    • 4
  1. 1.Dept. of Functional NeurosurgeryHôpital Neurologique et Neurochirurgical, Pierre WertheimerLyonFrance
  2. 2.Dept. of NeurologyINSERM U 534, Neurological HospitalLyonFrance
  3. 3.INSERM EMI 342, Claude Bernard UniversityLyon IFrance
  4. 4.Dept. of AnatomyClaude Bernard UniversityLyon IFrance
  5. 5.Dept. of BioengineeringSaltech CorpColoradoUSA

Personalised recommendations