Journal of Neurology

, Volume 253, Issue 9, pp 1203–1209 | Cite as

Contrast sensitivity, first-order motion and Initial ocular following in demyelinating optic neuropathy

  • Janet C. Rucker
  • Boris M. Sheliga
  • Edmond J. FitzGibbon
  • Frederick A. Miles
  • R. John Leigh


The ocular following response (OFR) is a measure of motion vision elicited at ultra-short latencies by sudden movement of a large visual stimulus. We compared the OFR to vertical sinusoidal gratings (spatial frequency 0.153 cycles/° or 0.458 cycles/°) of each eye in a subject with evidence of left optic nerve demyelination due to multiple sclerosis (MS). The subject showed substantial differences in vision measured with stationary low-contrast Sloan letters (20/63 OD and 20/200 OS at 2.5% contrast) and the Lanthony Desaturated 15-hue color test (Color Confusion Index 1.11 OD and 2.14 OS). Compared with controls, all of the subject’s OFR to increasing contrast showed a higher threshold. The OFR of each of the subject’s eyes were similar for the 0.153 cycles/° stimulus, and psychophysical measurements of his ability to detect these moving gratings were also similar for each eye. However, with the 0.458 cycles/° stimulus, the subject’s OFR was asymmetric and the affected eye showed decreased responses (smaller slope constant as estimated by the Naka-Rushton equation). These results suggest that, in this case, optic neuritis caused a selective deficit that affected parvocellular pathways mediating higher spatial frequencies, lower-contrast, and color vision, but spared the field-holding mechanism underlying the OFR to lower spatial frequencies. The OFR may provide a useful method to study motion vision in individuals with disorders affecting anterior visual pathways.


optic neuritis multiple sclerosis saccades pursuit 


  1. 1.
    Abadi RV, Gowen E (2004) Characteristics of saccadic intrusions. Vision Res 44:2675–2690PubMedCrossRefGoogle Scholar
  2. 2.
    Albrecht DG, Geisler WS, Frazor RA, Crane AM (2002) Visual cortex neurons of monkeys and cats: temporal dynamics of the contrast response function. J Neurophysiol 88:888–913PubMedGoogle Scholar
  3. 3.
    Albrecht DG, Hamilton DB (1982) Striate cortex of monkey and cat: contrast response function. J Neurophysiol 48:217–237PubMedGoogle Scholar
  4. 4.
    Asselman P, Chadwick DW, Marsden CD (1975) Visual evoked responses in the diagnosis and management of patients suspected of multiple sclerosis. Brain 98:261–282PubMedCrossRefGoogle Scholar
  5. 5.
    Balcer LJ, Baier ML, Cohen JA, et al. (2003) Contrast letter acuity as a visual component for the Multiple Sclerosis Functional Composite. Neurology 61:1367–1373PubMedGoogle Scholar
  6. 6.
    Beck RW, Cleary PA (1993) Optic Neuritis Study Group. Optic neuritis treatment trial: one year follow-up results. Arch Ophthalmol 111:773– 775PubMedGoogle Scholar
  7. 7.
    Beck RW, Cleary PA, Backlund JC, et al. (1994) The course of visual recovery after optic neuritis: experience of the optic neuritis treatment trial. Ophthalomology 101:1771–1778Google Scholar
  8. 8.
    Chen KJ, Sheliga BM, FitzGibbon EJ, Miles FA (2005) Initial ocular following in humans depends critically on the Fourier components of the motion stimulus. Ann N Y Acad Sci 1039:260–271PubMedCrossRefGoogle Scholar
  9. 9.
    Collewijn H, Van Der Mark F, Jansen TC (1975) Precise recording of human eye movements. Vision Res 15:447–450PubMedCrossRefGoogle Scholar
  10. 10.
    Derrington AM, Allen HA, Delicato LS (2004) Visual mechanisms of motion analysis and motion perception. Annu Rev Psychol 55:181–205PubMedCrossRefGoogle Scholar
  11. 11.
    Fisher JB, Jacobs DA, Markowitz CE, Galetta SL, Volpe NJ, Nano-Schiavi ML, Baier ML, Frohman EM, Winslow H, Frohman TC, Calabresi PA, Maguire MG, Cutter GR, Balcer LJ (2006) Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. Ophthalmology 113:324–332PubMedCrossRefGoogle Scholar
  12. 12.
    Flanagan P, Markuvel C (2005) Spatio-temporal selectivity of loss of colour and luminance contrast sensitivity with multiple sclerosis and optic neuritis. Ophthalmic Physiol Opt 25:57–65PubMedCrossRefGoogle Scholar
  13. 13.
    Frederiksen JL, Petrera J (1999) Serial visual evoked potentials in 90 untreated patients with acute optic neuritis. Surv Ophthalmol 44(Suppl 1):S54–S62PubMedCrossRefGoogle Scholar
  14. 14.
    Frederiksen JL, Sorensen TL, Sellebjerg FT (1997) Residual symptoms and signs after untreated acute optic neuritis. Acta Ophthalmol Scand 75:544–547PubMedGoogle Scholar
  15. 15.
    Frohman EM, Frohman TC, Zee DS, McColl R, Galetta S (2005) The neuro-ophthalmology of multiple sclerosis. Lancet Neurol 4:111–121PubMedCrossRefGoogle Scholar
  16. 16.
    Gellman RS, Carl JR, Miles FA (1990) Short latency ocular-following responses in man. Vis Neurosci 5:107–122PubMedCrossRefGoogle Scholar
  17. 17.
    Heuer HW, Britten KH (2002) Contrast dependence of response normalization in area MT of the rhesus macaque. J Neurophysiol 88:3398–3408PubMedCrossRefGoogle Scholar
  18. 18.
    Hickman SJ, Brex PA, Bierley CM, Silver NC, Barker GJ, Scolding NJ, Compston DA, Moseley IF, Plant GT, Miller DH (2001) Detection of optic nerve atrophy following a single episode of unilateral optic neuritis by MRI using a fat-saturated short-echo fast FLAIR sequence. Neuroradiology 43:123–128PubMedCrossRefGoogle Scholar
  19. 19.
    Hickman SJ, Toosy AT, Jones SJ, Altmann DR, Miszkiel KA, MacManus DG, Barker GJ, Plant GT, Thompson AJ, Miller DH (2004) A serial MRI study following optic nerve mean area in acute optic neuritis. Brain 127:2498–2505PubMedCrossRefGoogle Scholar
  20. 20.
    Kawano K, Miles FA (1986) Short-latency ocular following responses of monkey. II. Dependence on a prior saccadic eye movement. J Neurophysiol 56:1355–1380PubMedGoogle Scholar
  21. 21.
    Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452PubMedGoogle Scholar
  22. 22.
    Lu ZL, Sperling G (2001) Three-systems theory of human visual motion perception: review and update. J Opt Soc Am 18:2331–2370Google Scholar
  23. 23.
    Masson GS, Busettini C, Yang DS, Miles FA (2001) Short-latency ocular following in humans: sensitivity to binocular disparity. Vision Res 41:3371–3387PubMedCrossRefGoogle Scholar
  24. 24.
    Masson GS, Castet E (2002) Parallel motion processing for the initiation of short-latency ocular following in humans. J Neurosci 22:5149–5163PubMedGoogle Scholar
  25. 25.
    Masson GS, Yang DS, Miles FA (2002) Version and vergence eye movements in humans: open-loop dynamics determined by monocular rather than binocular image speed. Vision Res 42:2853–2867PubMedCrossRefGoogle Scholar
  26. 26.
    Miles FA, Kawano K, Optican LM (1986) Short-latency ocular following responses of monkey. I. Dependence on temporospatial properties of visual input. J Neurophysiol 56:1321–1354PubMedGoogle Scholar
  27. 27.
    Naka KI, Rushton WA (1966) S-potentials from colour units in the retina of fish (Cyprinidae). J Physiol (Lond) 185:536–555Google Scholar
  28. 28.
    Optic Neuritis Study Group (1997) Visual function 5 years after optic neuritis: experience of the optic neuritis treatment trial. Arch Ophthalmol 115:1545–1552Google Scholar
  29. 29.
    Porciatti V, Sartucci F (1996) Retinal and cortical evoked responses to chromatic contrast stimuli. Specific losses in both eyes of patients with multiple sclerosis and unilateral optic neuritis. Brain 119:723–740PubMedGoogle Scholar
  30. 30.
    Rodriguez M, Siva A, Cross SA, et al. (1995) Optic neuritis: a population-based study in Olmsted County, Minnesota. Neurology 45:244–250PubMedGoogle Scholar
  31. 31.
    Sclar G, Maunsell JHR, Lennie P (1990) Coding of image contrast in central visual pathways of the macaque monkey. Vision Res-1Google Scholar
  32. 32.
    Sheliga BM, Chen KJ, FitzGibbon EJ, Miles FA (2005) Initial ocular following in humans: A response to first-order motion energy. Vision Res 45:3307–3321PubMedCrossRefGoogle Scholar
  33. 33.
    Vaina LM, Soloviev S (2004) First-order and second-order motion: neurological evidence for neuroanatomically distinct systems. Prog Brain Res 144:197–212PubMedCrossRefGoogle Scholar
  34. 34.
    Wall M (1990) Loss of P retinal ganglion cell function in resolved optic neuritis. Neurology 40:649–653PubMedGoogle Scholar
  35. 35.
    Yang DS, FitzGibbon EJ, Miles FA (2003) Short-latency disparity-vergence eye movements in humans: sensitivity to simulated orthogonal tropias. Vision Res 43:431–443PubMedCrossRefGoogle Scholar
  36. 36.
    Yang DS, Miles FA (2003) Short-latency ocular following in humans is dependent on absolute (rather than relative) binocular disparity. Vision Res 43:1387–1396PubMedCrossRefGoogle Scholar

Copyright information

© Steinkopff Verlag Darmstadt 2006

Authors and Affiliations

  • Janet C. Rucker
    • 2
    • 3
  • Boris M. Sheliga
    • 1
  • Edmond J. FitzGibbon
    • 1
  • Frederick A. Miles
    • 1
  • R. John Leigh
    • 2
    • 3
    • 4
  1. 1.Laboratory of Sensorimotor Research, National Eye InstituteNational Institutes of HealthBethesdaUSA
  2. 2.Veterans Affairs Medical CenterCleveland
  3. 3.University HospitalsCase Western Reserve UniversityCleveland
  4. 4.Department of NeurologyUniversity HospitalsClevelandUSA

Personalised recommendations