Journal of Neurology

, 253:1189 | Cite as

Simple versus complex assessment of white matter hyperintensities in relation to physical performance and cognition: the LADIS study

  • A.A. GouwEmail author
  • W.M. Van der Flier
  • E.C.W. van Straaten
  • F. Barkhof
  • J.M. Ferro
  • H. Baezner
  • L. Pantoni
  • D. Inzitari
  • T. Erkinjuntti
  • L.O. Wahlund
  • G. Waldemar
  • R. Schmidt
  • F. Fazekas
  • Ph. Scheltens



White matter hyperintensities (WMH) on MRI are associated with disorders of gait and balance and with cognitive impairment. The most suitable method to assess WMH in relation to the clinical evaluation of disturbances in these areas has not yet been established.


To compare a simple visual rating scale, a detailed visual rating scale and volumetric assessment of WMH with respect to their associations with clinical measures of physical performance and cognition.


Data were drawn from the multicentre, multinational LADIS study. Data of 574 subjects were available. MRI analysis included assessment of WMH using the simple Fazekas scale, the more complex Scheltens scale and a semi-automated volumetric method. Disturbances of gait and balance and general cognitive function were assessed using the Short Physical Performance Battery (SPPB) and the Mini Mental State Examination (MMSE), respectively.


Irrespective of the method of measuring WMH, subjects with disturbances of gait and balance (SPPB≤10) had more WMH than subjects with normal physical performance. Subjects with mild cognitive deficits (MMSE≤25) had more WMH than subjects with normal cognition. Correlations between clinical measures and WMH were equal across methods of WMH measurement (SPPB: Spearman r=−0.22, −0.25, −0.26, all p<0.001; MMSE: Spearman r=−0.11, −0.10, −0.09, all p<0.05, for Fazekas scale, Scheltens scale and volumetry, respectively). These associations remained significant and comparable after correcting for age, gender and education in multivariate linear regression analyses.


Simple and complex measures of WMH yield comparable associations with measures of physical performance and cognition. This suggests that a simple visual rating scale may be sufficient, when analyzing relationships between clinical parameters and WMH in a clinical setting.


Mini Mental State Examination White Matter Hyperintensities Volumetry Multivariate Linear Regression Analysis Short Physical Performance Battery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The LADIS Study is supported by the European Union within the V European Framework Programme “Quality of life and management of living resources” (1998–2002), contract no. QLRT –2000-00446 as a concerted action.


  1. 1.
    De Leeuw FE, De Groot JC, Achten E, Oudkerk M, Ramos LM, Heijboer R, Hofman A, Jolles J, van Gijn J, Breteler MM (2001) Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol Neurosurg Psychiatry 70(1):9–14PubMedCrossRefGoogle Scholar
  2. 2.
    Guttmann CR, Benson R, Warfield SK, Wei X, Anderson MC, Hall CB, Abu-Hasaballah K, Mugler JP III, Wolfson L (2000) White matter abnormalities in mobility-impaired older persons. Neurology 54(6):1277–1283PubMedGoogle Scholar
  3. 3.
    Whitman GT, Tang Y, Lin A, Baloh RW, Tang T (2001) A prospective study of cerebral white matter abnormalities in older people with gait dysfunction. Neurology 57(6):990–994PubMedGoogle Scholar
  4. 4.
    De Groot JC, De Leeuw FE, Oudkerk M, van Gijn J, Hofman A, Jolles J, Breteler MM (2000) Cerebral white matter lesions and cognitive function: the Rotterdam Scan Study. Ann Neurol 47(2):145–151PubMedCrossRefGoogle Scholar
  5. 5.
    Longstreth WT, Jr., Manolio TA, Arnold A, Burke GL, Bryan N, Jungreis CA, Enright PL, O’Leary D, Fried L (1996) Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. The Cardiovascular Health Study. Stroke 27(8):1274–1282PubMedGoogle Scholar
  6. 6.
    van der Flier WM, van Straaten EC, Barkhof F, Verdelho A, Madureira S, Pantoni L, Inzitari D, Erkinjuntti T, Crisby M, Waldemar G, Schmidt R, Fazekas F, Scheltens P (2005) Small vessel disease and general cognitive function in nondisabled elderly: the LADIS study. Stroke 36(10):2116–2120PubMedCrossRefGoogle Scholar
  7. 7.
    Scheltens P, Erkinjunti T, Leys D, Wahlund LO, Inzitari D, del Ser T, Pasquier F, Barkhof F, Mantyla R, Bowler J, Wallin A, Ghika J, Fazekas F, Pantoni L (1998) White matter changes on CT and MRI: an overview of visual rating scales. European Task Force on Age-Related White Matter Changes. Eur Neurol 39(2):80–89PubMedCrossRefGoogle Scholar
  8. 8.
    Fazekas F, Barkhof F, Wahlund LO, Pantoni L, Erkinjuntti T, Scheltens P, Schmidt R (2002) CT and MRI rating of white matter lesions. Cerebrovasc Dis 13 Suppl 2:31–6. 31–36Google Scholar
  9. 9.
    Mantyla R, Erkinjuntti T, Salonen O, Aronen HJ, Peltonen T, Pohjasvaara T, Standertskjold-Nordenstam CG (1997) Variable agreement between visual rating scales for white matter hyperintensities on MRI. Comparison of 13 rating scales in a poststroke cohort. Stroke 28(8):1614–1623PubMedGoogle Scholar
  10. 10.
    Pantoni L, Basile AM, Pracucci G, Asplund K, Bogousslavsky J, Chabriat H, Erkinjuntti T, Fazekas F, Ferro JM, Hennerici M, O’brien J, Scheltens P, Visser MC, Wahlund LO, Waldemar G, Wallin A, Inzitari D (2005) Impact of age-related cerebral white matter changes on the transition to disability - the LADIS study: rationale, design and methodology. Neuroepidemiology 24(1–2):51–62PubMedCrossRefGoogle Scholar
  11. 11.
    Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA (1987) MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 149(2):351–356PubMedGoogle Scholar
  12. 12.
    Folstein MF, Folstein SE,McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198PubMedCrossRefGoogle Scholar
  13. 13.
    Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, Scherr PA, Wallace RB (1994) A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol 49(2):M85–M94PubMedGoogle Scholar
  14. 14.
    Reitan RM (1958) Validity of the Trail-Making Test as an indicator of organic brain damage. Percept Mot Skills (8):271–276CrossRefGoogle Scholar
  15. 15.
    Scheltens P, Barkhof F, Leys D, Pruvo JP, Nauta JJ, Vermersch P, Steinling M, Valk J (1993) A semiquantative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging. J Neurol Sci 114(1):7–12PubMedCrossRefGoogle Scholar
  16. 16.
    Van Straaten ECW, Fazekas F, Rostrup E, Scheltens P, Schmidt R, Pantoni L, Inzitari D, Waldemar G, Erkinjuntti T, Mantyla R, Wahlund L-O, Barkhof F (2006) Impact of white matter hyperintensities scoring method on correlations with clinical data: the LADIS study. Stroke 37(3):836–840PubMedCrossRefGoogle Scholar
  17. 17.
    Baloh RW, Yue Q, Socotch TM, Jacobson KM (1995) White matter lesions and disequilibrium in older people. I. Case-control comparison. Arch Neurol 52(10):970–974PubMedGoogle Scholar
  18. 18.
    Schmidt R, Scheltens P, Erkinjuntti T, Pantoni L, Markus HS, Wallin A, Barkhof F, Fazekas F (2004) White matter lesion progression: a surrogate endpoint for trials in cerebral small-vessel disease. Neurology 63(1):139–144PubMedGoogle Scholar
  19. 19.
    Kapeller P, Barber R, Vermeulen RJ, Ader H, Scheltens P, Freidl W, Almkvist O, Moretti M, del Ser T, Vaghfeldt P, Enzinger C, Barkhof F, Inzitari D, Erkinjunti T, Schmidt R, Fazekas F (2003) Visual rating of age-related white matter changes on magnetic resonance imaging: scale comparison, interrater agreement, and correlations with quantitative measurements. Stroke 34(2):441–445PubMedCrossRefGoogle Scholar
  20. 20.
    Fan YH, Lam WW, Mok VC, Huang RX, Wong KS (2003) Variability and validity of a simple visual rating scale in grading white matter changes on magnetic resonance imaging. J Neuroimaging 13(3):255–258PubMedCrossRefGoogle Scholar
  21. 21.
    Sachdev P, Cathcart S, Shnier R, Wen W, Brodaty H (1999) Reliability and validity of ratings of signal hyperintensities on MRI by visual inspection and computerised measurement. Psychiatry Res 92(2–3):103–115PubMedGoogle Scholar
  22. 22.
    Admiraal-Behloul F, van den Heuvel DM, Olofsen H, van Osch MJ, van der Grond J, van Buchem MA, Reiber JH (2005) Fully automatic segmentation of white matter hyperintensities in MR images of the elderly. Neuroimage 28(3):607–617PubMedCrossRefGoogle Scholar
  23. 23.
    Anbeek P, Vincken KL, van Osch MJ, Bisschops RH, van der Grond J (2004) Probabilistic segmentation of white matter lesions in MR imaging. Neuroimage 21(3):1037–1044PubMedCrossRefGoogle Scholar
  24. 24.
    van der Flier WM, van Straaten EC, Barkhof F, Ferro JM, Pantoni L, Basile AM, Inzitari D, Erkinjuntti T, Wahlund LO, Rostrup E, Schmidt R, Fazekas F, Scheltens P (2005) Medial temporal lobe atrophy and white matter hyperintensities are associated with mild cognitive deficits in non-disabled elderly people: the LADIS study. J Neurol Neurosurg Psychiatry 76(11):1497–1500PubMedCrossRefGoogle Scholar
  25. 25.
    Prins ND, van Straaten EC, van Dijk EJ, Simoni M, van Schijndel RA, Vrooman HA, Koudstaal PJ, Scheltens P, Breteler MM, Barkhof F (2004) Measuring progression of cerebral white matter lesions on MRI: visual rating and volumetrics. Neurology 62(9):1533–1539PubMedGoogle Scholar
  26. 26.
    Scheltens P, Leys D, Barkhof F, Huglo D, Weinstein HC, Vermersch P, Kuiper M, Steinling M, Wolters EC, Valk J (1992) Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 55(10):967–972PubMedCrossRefGoogle Scholar

Copyright information

© Steinkopff Verlag Darmstadt 2006

Authors and Affiliations

  • A.A. Gouw
    • 1
    • 2
    • 4
    • 12
  • W.M. Van der Flier
    • 1
    • 2
  • E.C.W. van Straaten
    • 1
    • 2
    • 4
  • F. Barkhof
    • 1
    • 3
    • 4
  • J.M. Ferro
    • 5
  • H. Baezner
    • 6
  • L. Pantoni
    • 7
  • D. Inzitari
    • 7
  • T. Erkinjuntti
    • 8
  • L.O. Wahlund
    • 9
  • G. Waldemar
    • 10
  • R. Schmidt
    • 11
  • F. Fazekas
    • 11
  • Ph. Scheltens
    • 1
    • 2
  1. 1.Alzheimer CenterVrije Universiteit Medical CenterAmsterdamThe Netherlands
  2. 2.Department of NeurologyVrije Universiteit Medical CenterAmsterdamThe Netherlands
  3. 3.Department of RadiologyVrije Universiteit Medical CenterAmsterdamThe Netherlands
  4. 4.Image Analysis Center (IAC)Vrije Universiteit Medical CenterAmsterdamThe Netherlands
  5. 5.Serviço de Neurologia, Centro de Estudos Egas MonizHospital de Santa Maria LisboaPortugal
  6. 6.Department of NeurologyUniversity of HeidelbergKlinikum MannheimGermany
  7. 7.Department of Neurological and Psychiatric SciencesUniversity of FlorenceFlorenceItaly
  8. 8.Memory Research Unit, Department of Clinical NeurosciencesHelsinki UniversityHelsinkiFinland
  9. 9.Karolinska Institute, Department of Clinical Neuroscience and Family MedicineHuddinge University HospitalHuddingeSweden
  10. 10.Memory Disorders Research Unit, Department of NeurologyCopenhagen University HospitalCopenhagenDenmark
  11. 11.Department of Neurology and MRI InstituteMedical UniversityGrazAustria
  12. 12.Department of Neurology, Alzheimer Center and Image Analysis CentreVrije Universiteit Medical CenterAmsterdamThe Netherlands

Personalised recommendations