Journal of Neurology

, Volume 253, Issue 9, pp 1165–1169 | Cite as

Spinocerebellar ataxia type 2 olfactory impairment shows a pattern similar to other major neurodegenerative diseases

  • Luis Velázquez-Pérez
  • Juan Fernandez-Ruiz
  • Rosalinda Díaz
  • Ruth Pérez- González
  • Nalia Canales Ochoa
  • Gilberto Sánchez Cruz
  • Luis Enrique Almaguer Mederos
  • Edilberto Martínez Góngora
  • Robyn Hudson
  • René Drucker-ColinEmail author


Olfactory function is affected in different neurodegenerative diseases. Recently, it has been found that some hereditary ataxias are also associated with significant olfactory impairment. However, the initial findings did not examine the nature of the olfactory impairment associated with these ataxias. In the present article the effect of spinocerebellar ataxia type 2 (SCA2) on olfactory function was studied in 53 SCA2 patients and 53 healthy control subjects from Holguín, Cuba. Several tests were applied to evaluate olfactory threshold, description, identification and discrimination. The results show significant impairment in SCA2 patients on all olfactory measurements, and the pattern of olfactory deficits found suggests that they have much in common with those reported for other neurodegenerative diseases such as Parkinson’s and Alzheimer’s diseases.


spinocerebellar ataxia olfactory function olfactory impairment neurodegenerative diseases 



This study was partially supported by Fideicomiso UNAM to RDC and an Agreement between CIRAH and Coordinación de la Investigación Científica, UNAM.

We are grateful to the patients, control subjects, and to the Cuban Ministry of Health for the cooperation given. We also thank Rafael Ojeda for his help during this study.


  1. 1.
    Abele M, Riet A, Hummel T, Klockgether T, Wullner U (2003) Olfactory dysfunction in cerebellar ataxia and multiple system atrophy. J Neurol 250:1453–1455PubMedCrossRefGoogle Scholar
  2. 2.
    Babovic-Vuksanovic D, Snow K, Patterson MC, Michels VV (1998) Spinocerebellar ataxia type 2 (SCA 2) in an infant with extreme CAG repeat expansion. Am J Med Genet 79:383–387PubMedCrossRefGoogle Scholar
  3. 3.
    Bacon AW, Bondi MW, Salmon DP, Murphy C (1998) Very early changes in olfactory functioning due to Alzheimer’s disease and the role of apolipoprotein E in olfaction. Ann N Y Acad Sci 855:723–731PubMedCrossRefGoogle Scholar
  4. 4.
    Connelly T, Farmer JM, Lynch DR, Doty RL (2003) Olfactory dysfunction in degenerative ataxias. J Neurol Neurosurg Psychiatry 74:1435–1437PubMedCrossRefGoogle Scholar
  5. 5.
    Devanand DP, Michaels-Marston KS, Liu X, Pelton GH, Padilla M, Marder K, Bell K, Stern Y, Mayeux R (2000) Olfactory deficits in patients with mild cognitive impairment predict Alzheimer’s disease at follow-up. Am J Psychiatry 157:1399–1405PubMedCrossRefGoogle Scholar
  6. 6.
    Distel H, Ayabe-Kanamura S, Martinez-Gomez M, Schicker I, Kobayakawa T, Saito S, Hudson R (1999) Perception of everyday odors–correlation between intensity, familiarity and strength of hedonic judgement. Chem Senses 24:191–199PubMedCrossRefGoogle Scholar
  7. 7.
    Doty RL (2001) Olfaction. Annu Rev Psychol 52:423–452PubMedCrossRefGoogle Scholar
  8. 8.
    Doty RL, Deems DA, Stellar S (1988) Olfactory dysfunction in parkinsonism: a general deficit unrelated to neurologic signs, disease stage, or disease duration. Neurology 38:1237–1244PubMedGoogle Scholar
  9. 9.
    Doty RL, Shaman P, Kimmelman CP, Dann MS (1984) University of Pennsylvania Smell Identification Test: a rapid quantitative olfactory function test for the clinic. Laryngoscope 94:176–178PubMedCrossRefGoogle Scholar
  10. 10.
    Estrada R, Galarraga J, Orozco G, Nodarse A, Auburger G (1999) Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies. Acta Neuropathol (Berl) 97:306–310CrossRefGoogle Scholar
  11. 11.
    Fernandez-Ruiz J, Diaz R, Hall-Haro C, Vergara P, Fiorentini A, Nunez L, Drucker-Colin R, Ochoa A, Yescas P, Rasmussen A, Alonso ME (2003) Olfactory dysfunction in hereditary ataxia and basal ganglia disorders. Neuroreport 14:1339–1341PubMedCrossRefGoogle Scholar
  12. 12.
    Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198PubMedCrossRefGoogle Scholar
  13. 13.
    Hawkes C (2003) Olfaction in neurodegenerative disorder. Mov Disord 18:364–372PubMedCrossRefGoogle Scholar
  14. 14.
    Hudson R, Arriola A, Martinez- Gomez M, Distel H (2006) Effect of air pollution on olfactory function in residents of Mexico city. Chem Senses 31:79–85PubMedCrossRefGoogle Scholar
  15. 15.
    Kovacs T (2004) Mechanisms of olfactory dysfunction in aging and neurodegenerative disorders. Ageing Res Rev 3:215–232PubMedCrossRefGoogle Scholar
  16. 16.
    Mainland JD, Johnson BN, Khan R, Ivry RB, Sobel N (2005) Olfactory impairments in patients with unilateral cerebellar lesions are selective to inputs from the contralesional nostril. J Neurosci 25:6362–6371PubMedCrossRefGoogle Scholar
  17. 17.
    Mesholam RI, Moberg PJ, Mahr RN, Doty RL (1998) Olfaction in neurodegenerative disease: a meta-analysis of olfactory functioning in Alzheimer’s and Parkinson’s diseases. Arch Neurol 55:84–90PubMedCrossRefGoogle Scholar
  18. 18.
    Orozco Diaz G, Nodarse Fleites A, Cordoves Sagaz R, Auburger G (1990) Autosomal dominant cerebellar ataxia: clinical analysis of 263 patients from a homogeneous population in Holguin, Cuba. Neurology 40:1369–1375PubMedGoogle Scholar
  19. 19.
    Ponsen MM, Stoffers D, Booij J, van Eck-Smit BL, Wolters E, Berendse HW (2004) Idiopathic hyposmia as a preclinical sign of Parkinson’s disease. Ann Neurol 56:173–181PubMedCrossRefGoogle Scholar
  20. 20.
    Qureshy A, Kawashima R, Imran MB, Sugiura M, Goto R, Okada K, Inoue K, Itoh M, Schormann T, Zilles K, Fukuda H (2000) Functional mapping of human brain in olfactory processing: a PET study. J Neurophysiol 84:1656–1666PubMedGoogle Scholar
  21. 21.
    Rub U, Del Turco D, Del Tredici K, de Vos RA, Brunt ER, Reifenberger G, Seifried C, Schultz C, Auburger G, Braak H (2003) Thalamic involvement in a spinocerebellar ataxia type 2 (SCA2) and a spinocerebellar ataxia type 3 (SCA3) patient, and its clinical relevance. Brain 126:2257–2272PubMedCrossRefGoogle Scholar
  22. 22.
    Sanpei K, Takano H, Igarashi S, Sato T, Oyake M, Sasaki H, Wakisaka A, Tashiro K, Ishida Y, Ikeuchi T, Koide R, Saito M, Sato A, Tanaka T, Hanyu S, Takiyama Y, Nishizawa M, Shimizu N, Nomura Y, Segawa M, Iwabuchi K, Eguchi I, Tanaka H, Takahashi H, Tsuji S (1996) Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet 14:277–284PubMedCrossRefGoogle Scholar
  23. 23.
    Schols L, Gispert S, Vorgerd M, Menezes Vieira-Saecker AM, Blanke P, Auburger G, Amoiridis G, Meves S, Epplen JT, Przuntek H, Pulst SM, Riess O (1997) Spinocerebellar ataxia type 2. Genotype and phenotype in German kindreds. Arch Neurol 54:1073–1080PubMedGoogle Scholar
  24. 24.
    Ship JA, Weiffenbach JM (1993) Age, gender, medical treatment, and medication effects on smell identification. J Gerontol 48:M26–32PubMedGoogle Scholar
  25. 25.
    Sobel N, Prabhakaran V, Hartley CA, Desmond JE, Zhao Z, Glover GH, Gabrieli JD, Sullivan EV (1998) Odorant-induced and sniff-induced activation in the cerebellum of the human. J Neurosci 18:8990–9001PubMedGoogle Scholar
  26. 26.
    Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, Bryer A, Diener HC, Massaquoi S, Gomez CM, Coutinho P, Ben Hamida M, Campanella G, Filla A, Schut L, Timann D, Honnorat J, Nighoghossian N, Manyam B (1997) International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci 145:205–211PubMedCrossRefGoogle Scholar
  27. 27.
    Vanderpool HY (1996) The ethics of research involving human subjects : facing the 21st century. University Pub. Group, Frederick, MdGoogle Scholar
  28. 28.
    Velazquez-Perez L, Seifried C, Santos-Falcon N, Abele M, Ziemann U, Almaguer LE, Martinez-Gongora E, Sanchez-Cruz G, Canales N, Perez-Gonzalez R, Velazquez-Manresa M, Viebahn B, von Stuckrad-Barre S, Fetter M, Klockgether T, Auburger G (2004) Saccade velocity is controlled by polyglutamine size in spinocerebellar ataxia 2. Ann Neurol 56:444–447PubMedCrossRefGoogle Scholar
  29. 29.
    Wadia NH, Swami RK (1971) A new form of heredo-familial spinocerebellar degeneration with slow eye movements (nine families). Brain 94:359–374PubMedGoogle Scholar

Copyright information

© Steinkopff Verlag Darmstadt 2006

Authors and Affiliations

  • Luis Velázquez-Pérez
    • 1
  • Juan Fernandez-Ruiz
    • 2
  • Rosalinda Díaz
    • 2
  • Ruth Pérez- González
    • 1
  • Nalia Canales Ochoa
    • 1
  • Gilberto Sánchez Cruz
    • 1
  • Luis Enrique Almaguer Mederos
    • 1
  • Edilberto Martínez Góngora
    • 1
  • Robyn Hudson
    • 3
  • René Drucker-Colin
    • 4
    Email author
  1. 1.Centro para la Investigación y Rehabilitación de las Ataxias Hereditarias” Carlos J. Finlay”HolguínCuba
  2. 2.Departamento de Fisiología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMéxico
  3. 3.Departamento de Biología Celular yFisiología Instituto de Investigaciones Biomédicas, UNAMMéxico
  4. 4.Departamento de NeurocienciasInstituto de Fisiología Celular, UNAMMéxico

Personalised recommendations