Journal of Neurology

, Volume 252, Supplement 3, pp iii21–iii27 | Cite as

Genomics and proteomics: role in the management of multiple sclerosis

  • Ludwig Kappos
  • Lutz Achtnichts
  • Frank Dahlke
  • Jens Kuhle
  • Y. Naegelin
  • Rupert Sandbrink
  • Raija L. P. Lindberg
Article

Abstract

Epidemiological studies and neuro-imaging have provided important insights into the natural course and prognostic factors of multiple sclerosis (MS), but our ability to predict different courses of the disease, and especially its response to treatment, is still very limited. Pharmacogenetic, pharmacogenomic and proteomic studies aim to assess gene and protein function in disease and promise to help to fill this important gap in our knowledge. Such studies may increase our understanding of disease mechanisms and responses to therapeutic compounds. Large-scale transcriptional expression profiling can be performed using gene chip microarrays; this technology allows screening for differentially expressed genes without having well-defined underlying hypotheses (“discovery-driven research”). To complement the technique, real time reverse transcription and polymerase chain reaction (RT-PCR) can be used for more targeted profiling and provides quantitative data on pre-selected genes. However, to maximise their clinical utility, expression profiling results need to be combined with well-documented clinical and imaging data.

Two forthcoming studies will investigate the long-term effects of early treatment with interferon beta-1b (IFNβ) on the course of MS. The BENEFIT (BEtaseron®/Betaferon® in Newly Emerging MS for Initial Treatment) study will incorporate pharmacogenetic and pharmacogenomic analyses to determine the genetic elements controlling treatment response. BEST-PGx (Betaferon®/Betaseron® in Early relapsing-remitting MS Surveillance Trial—Pharmacogenomics) is an exploratory 2-year study that will investigate the value of RNA expression profiling and pharmacogenetics in predicting treatment response to IFNβ in patients with early relapsing MS. The main goal of BEST-PGx is the identification of differences in gene expression profiles of patients showing differential treatment responses. In addition, this study may reveal new information relevant to the mechanism of action of interferon treatment in MS and also to differences in the underlying pathology of the immune system. These data may help us approach the goal of a really “individualised therapy” with increased efficacy, reduced adverse drug reactions and more efficient use of healthcare resources.

Key words

genomics interferon beta-1b multiple sclerosis proteomics pharmacogenetics 

References

  1. 1.
    Barkhof F, Filippi M, Comi G, the ETOMS Study Group (2002) Diagnostic MRI Criteria: Prediction of Conversion to CDMS. AAN 2002, Denver, USA. Neurology 58(Suppl 3):S157CrossRefGoogle Scholar
  2. 2.
    Beck RW, Chandler DL, Cole SR, Simon JH, Jacobs LD, Kinkel RP, Selhorst JB, Rose JW, Cooper JA, Rice G, Murray TJ, Sandrock AW (2002) Interferon beta-1a for early multiple sclerosis: CHAMPS trial subgroup analyses. Ann Neurol 51:481–490CrossRefPubMedGoogle Scholar
  3. 3.
    Becker KG, Mattson DH, Powers JM, Gado AM, Biddison WE (1997) Analysis of a sequenced cDNA library from multiple sclerosis lesions. J Immunol 77:27–38Google Scholar
  4. 4.
    Berger T, Rubner P, Schautzer F, Egg R, Ulmer H, Mayringer I, Dilitz E, Deisenhammer F, Reindl M (2003) Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N Eng J Med 349:139–145CrossRefGoogle Scholar
  5. 5.
    Bjartmar C, Trapp BD (2001) Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr Opin Neurol 14:271–278CrossRefPubMedGoogle Scholar
  6. 6.
    Bomprezzi R, Ringner M, Kim S, Bittner ML, Khan J, Chen Y, Elkahloun A, Yu A, Bielekova B, Meltzer PS, Martin R, McFarland HF, Trent JM (2003) Gene expression profile in multiple sclerosis patients and healthy controls to disease. Hum Mol Genet 12:2191–2199CrossRefPubMedGoogle Scholar
  7. 7.
    Brex PA, Ciccarelli O, O’Riordan JI, Sailer M, Thompson AJ, Miller DH (2002) A longitudinal study of abnormalities on MRI and disability from multiple sclerosis. N Eng J Med 346:158–164CrossRefGoogle Scholar
  8. 8.
    Brinkmeier H, Aulkemeyer P, Wollinsky KH, Rudel R (2000) An endogenous pentapeptide acting as a sodium channel blocker in inflammatory autoimmune disorders of the central nervous system. Nat Med 6:808–811CrossRefPubMedGoogle Scholar
  9. 9.
    Butte A (2002) The use and analysis of microarray data. Nat Rev Drug Discov 1:951–960CrossRefPubMedGoogle Scholar
  10. 10.
    Celis JE, Gromov P (2003) Proteomics in translational cancer research: towards an integrated approach. Cancer Cell 3:9–15CrossRefPubMedGoogle Scholar
  11. 11.
    Chabas D, Baranzini SE, Mitchell D, Bernard CC, Rittling SR, Denhardt DT, Sobel RA, Lock C, Karpuj M, Pedotti R, Heller R, Oksenberg JR, Steinman L (2001) The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science 294:1731–1735CrossRefPubMedGoogle Scholar
  12. 12.
    Comi G, Filippi M, Barkhof F, Durelli L, Edan G, Fernandez O, Hartung H, Seeldrayers P, Sorensen PS, Rovaris M, Martinelli V, Hommes OR, Early Treatment of Multiple Sclerosis Study Group (2001) Effect of early interferon treatment on conversion to definite multiple sclerosis: a randomised study. Lancet 357:1576–1582CrossRefPubMedGoogle Scholar
  13. 13.
    De Stefano N, Narayanan S, Francis GS, Arnaoutelis R, Tartaglia MC, Antel JP, Matthews PM, Arnold DL (2001) Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol 58:65–70CrossRefPubMedGoogle Scholar
  14. 14.
    Duggan DJ, Bittner M, Chen Y, Meltzer P, Trent JM (1999) Expression profiling using cDNA microarrays. Nat Genet 21(Suppl 1):10–14CrossRefGoogle Scholar
  15. 15.
    Dumont D, Noben J-P, Raus J, Stinissen P, Robben J (2004) Proteomic analysis of cerebrospinal fluid from multiple sclerosis patients. Proteomics 4:2117–2124CrossRefPubMedGoogle Scholar
  16. 16.
    Dyment DA, Ebers GC (2002) An array of sunshine in multiple sclerosis. N Eng J Med 347:1445–1447CrossRefGoogle Scholar
  17. 17.
    Freedman M, Edan G, Hartung HP, Kappos L, Miller D, Montalban X, Polman C, Barkhof F, Bauer L, Ghazi M, Sandbrink R (2003) Betaferon®/Betaseron® (Interferon beta-1b) in early treatment of multiple sclerosis: the Benefit study. Neurology 60(Suppl 1):A483Google Scholar
  18. 18.
    Graham KL, Robinson WH, Steinman L, Utz PJ (2004) High-throughput methods for measuring autoantibodies in systemic lupus erythematosus and other autoimmune diseases. Autoimmunity 37:269–272CrossRefPubMedGoogle Scholar
  19. 19.
    Graumann U, Reynolds R, Steck AJ, Schaeren-Wiemers N (2003) Molecular changes in normal appearing white matter in multiple sclerosis are characteristic of neuroprotective mechanisms against hypoxic insult. Brain Pathol 13:554–573PubMedGoogle Scholar
  20. 20.
    Grekova MC, Robinson ED, Faerber MA, Katz P, McFarland HF, Richert JR (1996) Deficient expression in multiple sclerosis of the inhibitory transcription factor Sp3 in mononuclear blood cells. Ann Neurol 40:1080–1112CrossRefGoogle Scholar
  21. 21.
    Hammack BN, Owens GP, Burgoon MP, Gilden DH (2003) Improved resolution of human cerebrospinal fluid proteins on two-dimensional gels. Mult Scler 9:472–475CrossRefPubMedGoogle Scholar
  22. 22.
    Hong J, Zang YC, Hutton G, Rivera VM, Zhang JZ (2004) Gene expression profiling of relevant biomarkers for treatment evaluation in multiple sclerosis. J Neuroimmunol 152:126–139CrossRefPubMedGoogle Scholar
  23. 23.
    Hueber W, Utz PJ, Steinman L, Robinson WH (2002) Autoantibody profiling for the study and treatment of autoimmune disease. Arthritis Res 4:290–295Google Scholar
  24. 24.
    Jacobs LD, Beck RW, Simon JH, Kinkel RP, Brownscheidle CM, Murray TJ, Simonian NA, Slasor PJ, Sandrock AW (2000) Intramuscular interferon beta-1a therapy initiated during a first demyelinating event in multiple sclerosis. CHAMPS Study Group. N Eng J Med 343:898–904CrossRefGoogle Scholar
  25. 25.
    Juan HF, Chen JH, Hsu WT, Huang SC, Chen ST, Yi-Chung Lin J, Chang YW, Chiang CY, Wen LL, Chan DC, Liu YC, Chen YJ (2004) Identification of tumor-associated plasma biomarkers using proteomic techniques: from mouse to human. Proteomics 4:2766–2775CrossRefPubMedGoogle Scholar
  26. 26.
    Kappos L, Achtnichts L, Durelli L, Fernandez O, Petereit H, De Sa J, Siva A, Radue EW, Daumer M, for the BESTPGx Study Group (2004) BEST-PGx: design of a pharmacogenomic and pharmacogenetic study to identify criteria for prediction of treatment response to interferon beta-1b. Mult Scler 10(Suppl 2):S245CrossRefGoogle Scholar
  27. 27.
    Kinkel R, on behalf of the CHAMPS Study Group (2002) The effect of Avonex® in patients with a single demyelinating event and MRI evidence of high lesion burden and active inflammation. ENS, Berlin, GermanyGoogle Scholar
  28. 28.
    Koike F, Satoh J, Miyake S, Yamamoto T, Kawai M, Kikuchi S, Nomura K, Yokoyama K, Ota K, Kanda T, Fukazawa T, Yamamura T (2003) Microarray analysis identifies interferon beta-regulated genes in multiple sclerosis. J Neuroimmunol 139:109–118CrossRefPubMedGoogle Scholar
  29. 29.
    Leung YF, Cavalieri D (2003) Fundamentals of cDNA microarray data analysis. Trends Genet 19:649–659CrossRefPubMedGoogle Scholar
  30. 30.
    Lindberg RLP, DeGroot CJA, Certa U, Ravid R, Hoffmann F, Kappos L, Leppert D (2004) Multiple sclerosis as a generalized CNS disease-comparative microarray analysis of normal appearing white matter and lesions in secondary progressive MS. J Neuroimmunol 152:154–167CrossRefPubMedGoogle Scholar
  31. 31.
    Liotta LA, Espina V, Mehta AI, Calvert V, Rosenblatt K, Geho D, Munson PJ, Young L, Wulfkuhle J, Petricoin EF (2003) Protein microarrays: Meeting analytical challenges for clinical applications. Cancer Cell 3:317–325CrossRefPubMedGoogle Scholar
  32. 32.
    Lock C,Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H, Langer-Gould A, Strober S, Cannella B, Allard J, Klonowski P, Austin A, Lad N, Kaminski N, Galli SJ, Oksenberg JR, Raine CS, Heller R, Steinman L (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8:500–508CrossRefPubMedGoogle Scholar
  33. 33.
    McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, McFarland HF, Paty DW, Polman CH, Reingold SC, Sandberg-Wollheim M, Sibley W, Thompson A, van den Noort S, Weinshenker BY, Wolinsky JS (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 50:121–127CrossRefPubMedGoogle Scholar
  34. 34.
    Martin R, Sturzebecher CS, McFarland HF (2001) Immunotherapy of multiple sclerosis: where are we? Where should we go? Nat Immunol 2:785–788CrossRefPubMedGoogle Scholar
  35. 35.
    Mycko MP, Papoian R, Boschert U, Raine CS, Selmaj KW (2003) cDNA microarray analysis in multiple sclerosis lesions: detection of genes associated with disease activity. Brain 126:1048–1057CrossRefPubMedGoogle Scholar
  36. 36.
    Poser CM, Paty DW, Scheinberg L, McDonald WI, Davis FA, Ebers GC, Johnson KP, Sibley WA, Silberberg DH, Tourtellotte WW (1983) New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 13:227–231CrossRefPubMedGoogle Scholar
  37. 37.
    Ramanathan M, Weinstock-Guttman B, Nguyen LT, Badgett D, Miller C, Patrick K, Brownscheidle C, Jacobs L (2001) In vivo gene expression revealed by cDNA arrays: the pattern in relapsing-remitting multiple sclerosis patients compared with normal subjects. J Neuroimmunol 116:213–219CrossRefPubMedGoogle Scholar
  38. 38.
    Robinson WH, Steinman L, Utz PJ (2003) Proteinarrays for autoantibody profiling and fine-specificity mapping. Proteomics 3:2077–2084CrossRefPubMedGoogle Scholar
  39. 39.
    Schulze A, Downward J (2001) Navigating gene expression using microarrays—a technology review. Nat Cell Biol 3:E190–E195CrossRefPubMedGoogle Scholar
  40. 40.
    Simon JH, Jacobs LD, Campion MK, Rudick RA, Cookfair DL,Herndon RM, Richert JR, Salazar AM, Fischer JS, Goodkin DE, Simonian N, Lajaunie M, Miller DE, Wende K, Martens-Davidsn A, Kinkel RP, Munschauer FE 3rd, Brownscheidle CM (1999) A longitudinal study of brain atrophy in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Neurology 53:139–148PubMedGoogle Scholar
  41. 41.
    Smolen P, Baxter DA, Byrne JH (2000) Mathematical modeling of gene networks. Neuron 26:567–580CrossRefPubMedGoogle Scholar
  42. 42.
    Sturzebecher S, Wandinger KP, Rosenwald A, Sathyamoorthy M, Tzou A, Mattar P, Frank JA, Staudt L, Martin R, McFarland HF (2003) Expression profiling identifies responder and non-responder phenotypes to interferonbeta in multiple sclerosis. Brain 126:1419–1429CrossRefPubMedGoogle Scholar
  43. 43.
    Surrogate Markers of Clinical Disease in Multiple Sclerosis (2002) Proceedings of the MS Forum Modern Management Workshop. PAREXEL MMS Europe Ltd, Worthing, UK, p 32Google Scholar
  44. 44.
    Tajouri L, Mellick AS, Ashton KJ, Tannenberg AEG, Nagra RM, Tourtelotte WW, Griffiths LR (2003) Quantitative and qualitative changes in gene expression patterns characterize the activity of plaques in multiple sclerosis. Mol Brain Res 119:170–183CrossRefPubMedGoogle Scholar
  45. 45.
    Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Eng J Med 338:278–285CrossRefGoogle Scholar
  46. 46.
    Wandinger KP, Sturzebecher CS, Bielekova B, Detore G, Rosenwald A, Staudt LM, McFarland HF, Martin R (2001) Complex immunomodulatory effects of interferon-beta in multiple sclerosis include the upregulation of T helper 1-associated marker genes. Ann Neurol 50:349–357CrossRefPubMedGoogle Scholar
  47. 47.
    Whitney LW, Becker KG, Tresser NJ, Caballero-Ramos CI, Munson PJ, Prabhu VV, Trent JM, McFarland HF, Biddison WE (1999) Analysis of gene expression in multiple sclerosis lesions using cDNA microarrays. Ann Neurol 46:425–428CrossRefPubMedGoogle Scholar
  48. 48.
    Whitney LW, Ludwin SK, McFarland HF, Biddison WE (2001) Microarray analysis of gene expression in multiple sclerosis and EAE identifies 5-lipoxygenase as a component of inflammatory lesions. J Immunol 121:40–48Google Scholar

Copyright information

© Steinkopff-Verlag 2005

Authors and Affiliations

  • Ludwig Kappos
    • 1
    • 2
  • Lutz Achtnichts
    • 1
  • Frank Dahlke
    • 3
  • Jens Kuhle
    • 1
    • 2
  • Y. Naegelin
    • 1
  • Rupert Sandbrink
    • 3
  • Raija L. P. Lindberg
    • 2
  1. 1.Outpatient Clinic Neurology-NeurosurgeryUniversity HospitalBaselSwitzerland
  2. 2.Department of ResearchUniversity HospitalBaselSwitzerland
  3. 3.Schering AG, Clinical Development CNSBerlinGermany

Personalised recommendations