Journal of Neurology

, Volume 252, Issue 6, pp 718–724 | Cite as

Release of brain–type and heart–type fatty acid–binding proteins in serum after acute ischaemic stroke

  • M. T. Wunderlich
  • T. Hanhoff
  • M. Goertler
  • F. Spener
  • J.  F. C. Glatz
  • C.-W. Wallesch
  • M.  M.  A.  L. Pelsers


This study aimed at an analysis of the release of Braintype and Heart–type Fatty Acid– Binding Proteins (B–FABP and HFABP) in acute ischaemic stroke and their potential value as neurobiochemical markers of brain damage.

We investigated 42 consecutive patients admitted within 6 hours after ischaemic stroke. Serial venous blood samples were taken hourly between 1 to 6 hours, and at 12, 18, 24, 48, 72, 96, and 120 hours after stroke onset. In all patients lesion topography was assessed and infarct volume was calculated. The neurological deficit was quantified by the National Institutes of Health stroke scale score, and functional outcome was assessed with the modified Rankin Scale 3 months after stroke.

H–FABP and B–FABP concentrations showed peak values already 2 to 3 hours after stroke onset and remained elevated up to last measurements at 120 hours.Unlike BFABP, early H–FABP concentrations were significantly associated with the severity of the neurological deficit and the functional outcome. High H–FABP release was associated with large infarction on CT.

Our study shows for the first time quantitative data of serum BFABP and H–FABP being elevated early in acute ischaemic stroke indicating that especially H–FABP might have the potential to be a rapid marker of brain damage and clinical severity. As both FABPs indicate damage to neuronal and glial tissue but are not specific for cerebral infarction, further investigations are needed to better understand the prolonged release of both in ischaemic stroke which is in contrast to the transient increase after myocardial infarction and can not be explained by their renal extraction.

Key words

B–FABP H–FABP acute stroke diagnosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraha HD, Butterworth RJ, Bath PMW, WassifWS, Garthwaite J, Sherwood RA (1997) Serum S–100 protein, relationship to clinical outcome in acute stroke. Ann Clin Biochem 34:366–370PubMedGoogle Scholar
  2. 2.
    Adams HP, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, Marsh III, EE and the TOAST Investigators (1993) Classification of subtype of acute ischemic stroke. Stroke 24:35–41PubMedGoogle Scholar
  3. 3.
    Bamford J, Sandercock P, Dennis M, Burn J, Warlow C (1991) Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet 337:1521–1526CrossRefPubMedGoogle Scholar
  4. 4.
    Bass NM, Barker ME, Manning JA, Jones AL, Ockner RJ (1989) Acinar heterogeneity of fatty acid–binding protein in the livers of male, female and clofibrate treated rats. Hepatology 9:12–21PubMedGoogle Scholar
  5. 5.
    Bertsch T, Casarin W, Kretschmar M, Zimmer W, Walter S, Sommer C, Muehlhauser F, Ragoschke A, Kuehl S, Schmidt R, Pohlmann–Eden B, Nassabi C, Nichterlein T, Fassbender K (2001) Protein S–100B: A serum marker for ischemic and infectious injury of cerebral tissue. Clin Chem Lab Med 39:319–323CrossRefPubMedGoogle Scholar
  6. 6.
    Büttner T, Weyers S, Postert T, Sprengelmeyer R, Kuhn W (1997) S–100 Protein: Serum marker of focal brain damage after ischemic territorial MCA infarction. Stroke 28:1961–1965PubMedGoogle Scholar
  7. 7.
    De Groot MJM, Wodzig KWH, Simoons ML, Glatz JFC, Hermens WT (1999) Measurement of myocardial infarct size from plasma fatty acid–binding protein or myoglobin, using individually estimated clearance rates. Cardiovasc Res 44:315–324CrossRefPubMedGoogle Scholar
  8. 8.
    Elting JW, de Jaeger AEJ, Teelken AW, Schaaf MJ, Maurits NM, van der Naalt J, Smit Sibinga CT, Sulter GA, de Keyser J (2000) Comparison of serum S–100 protein levels following stroke and traumatic brain injury. J Neurol Sci 181:104–110CrossRefPubMedGoogle Scholar
  9. 9.
    Fassbender K, Schmidt R, Schreiner A, Fatar M, Mühlhauser F, Daffertshofer M, Hennerici M (1997) Leakage of brain–originated proteins in peripheral blood: temporal profile and diagnostic value in early ischemic stroke. J Neurol Sci 148:101–105CrossRefPubMedGoogle Scholar
  10. 10.
    Feng L, Hatten ME, Heintz N (1994) Brain lipid–binding protein (BLBP): a novel signalling system in the developing mammalian CNS. Neuron 12:895–908CrossRefPubMedGoogle Scholar
  11. 11.
    Foerch C, du Mesnil de Rochement R, Singer O, Neumann–Haefelin T, Buchkremer M, Zanella FE, Steinmetz H, Sitzer M (2003) S100B as a surrogate marker for successful clot lysis in hyperacute middle cerebral artery occlusion. J Neurol Neurosurg Psychiatry 74:322–325CrossRefPubMedGoogle Scholar
  12. 12.
    Glatz JFC, Van der Voort D, Hermens WT (2002) Fatty acid–binding protein as the earliest available plasma marker of acute myocardial injury. J Clin Lig Assay 25:167–177Google Scholar
  13. 13.
    Glatz JFC, Van der Vusse GJ (1996) Cellular fatty acid–binding proteins. Their function and physiological significance. Prog Lipid Res 35:253–282Google Scholar
  14. 14.
    Glatz JFC, Van der Vusse GJ, Simoons ML, Kragten JA, Van Dieijen–Visser MP, Hermens WT (1998) Fatty acidbinding protein and the early detection of acute myocardial infarction. Clin Chim Acta 272:87–92CrossRefPubMedGoogle Scholar
  15. 15.
    Herrmann M, Vos P, Wunderlich MT, de Bruijn CHMM, Lamers KJB (2000) Release of glial tissue–specific proteins after acute stroke. Stroke 31:2670–2677PubMedGoogle Scholar
  16. 16.
    Herrmann M, Ehrenreich H (2003) Brain derived proteins as markers of acute stroke: their relation to pathophysiology, outcome prediction and neuroprotective drug monitoring. Restor Neurol Neurosci 21:177–190PubMedGoogle Scholar
  17. 17.
    Heuckeroth RO, Birkenmeier EH, Levin MS, Gordon JI (1987) Analysis of the tissue–specific expression, developmental regulation, and linkage relationship of a rodent gene encoding heart fatty acid binding protein. J Biol Chem 262:9709–9717PubMedGoogle Scholar
  18. 18.
    Jönsson H (2003) S100B and cardiac surgery: Possibilities and limitations. Restor Neurol Neurosci 21:151–157PubMedGoogle Scholar
  19. 19.
    Kurtz A, Zimmer A, Schnütgen F, Glatz JFC, Hermens WT (1994) The expression pattern of a novel gene encoding brain–fatty acid binding protein correlates neuronal and glial cell development. Development 120:2637–2649PubMedGoogle Scholar
  20. 20.
    Lyden P, Brott T, Tilley B, Welch KM, Mascha EJ, Levine S, Haley EC, Grotta J, Marler J (1994) Improved reliability of the NIH Stroke Scale using video training. NINDS TPA Stroke Study Group. Stroke 25:2220–2226PubMedGoogle Scholar
  21. 21.
    Mahony FI, Barthel DW (1965) Functional evaluation: The Barthel Index. Md Med J 14:61–65Google Scholar
  22. 22.
    Marchi N, Cavaglia M, Fazio V, Bhudia H, Hallene K, Janigro D (2004) Peripheral markers of the blood–brain barrier damage. Clin Chim Acta 342:1–12CrossRefPubMedGoogle Scholar
  23. 23.
    Myers–Payne SC, Hubbell T, Pu L, Schnütgen F, Börchers T, Wood WG, Spener F, Schroeder F (1996) Isolation and characterization of two fatty acid binding proteins from mouse brain. J Neurochem 66:1648–1656PubMedGoogle Scholar
  24. 24.
    Missler U, Wiesmann M, Friedrich C, Kaps M (1997) S–100 protein and neuron– specific enolase concentrations in blood as indicator of stroke volume. Stroke 28:1956–1960PubMedGoogle Scholar
  25. 25.
    Nakata T, Hashimoto A, Hase M, Tsuchihashi K, Shimamoto K (2003) Human heart–type fatty acid–binding protein as an early diagnostic and prognostic marker in acute coronary syndrome. Cardiology 99:96–104CrossRefPubMedGoogle Scholar
  26. 26.
    Oh SH, Lee JG, Na SJ, Park JH, Choi YC, Kim WJ (2003) Prediction of early clinical severity and extent of neuronal damage in anterior–circulation infarction using the initial serum neuronspecific enolase level. Arch Neurol 60:37–41PubMedGoogle Scholar
  27. 27.
    Pagani F, Bonora R, Bonetti G, Panteghini M (2002) Evaluation of a sandwich enzyme–linked immunosorbent assay for the measurement of serum heart fatty acid–binding protein. Ann Clin Biochem 39:404–405CrossRefPubMedGoogle Scholar
  28. 28.
    Pelsers MMAL, Chapelle JP, Knapen M, Hermens WT, Glatz JFC (1999) Influence of age and sex and day–to–day and within–day biological variation on plasma concentrations of fatty acidbinding protein and myoglobin in healthy subjects. Clin Chem 45: 441–443Google Scholar
  29. 29.
    Pelsers MMAL, Lutgerink JT, Nieuwenhoven FA, Tandon NN, van der Vusse GJ, Arends JW, Hoogenboom HR, Glatz JF (1999) A sensitive immunoassay for rat fatty acid translocase (CD36) using phage antibodies selected on cell transfectants: abundant presence of fatty acid translocase/CD36 in cardiac and red skeletal muscle and up–regulation in diabetes. Biochem J 337:407–414CrossRefPubMedGoogle Scholar
  30. 30.
    Pelsers MMAL, Hanhoff T, Van der Voort D, Arts B, Peters M, Ponds R, Honig A, Rudzinski WW, Spener F, de Kruijk JR, Twijnstra A, Hermens WT, Menheere PPCA, Glatz JFC (2004) Brain–type and Heart–type Fatty Acid–Binding Proteins in the Brain; Tissue Distribution and Clinical Utility. Clin Chem 50:1568–1575CrossRefPubMedGoogle Scholar
  31. 31.
    Pu L, Igbavboa U, Wood WG, Roths JB, Kier AB, Spener F, Schroeder F (1999) Expression of fatty acid binding proteins is altered in aged mouse brain. Mol Cell Biochem 198:69–78CrossRefPubMedGoogle Scholar
  32. 32.
    Reynolds MA, Kirchick HJ, Dahlen JR, Anderberg JM, McPherson PH, Nakamura KK, Laskowitz DT, Valkirs GE, Buechler KF (2003) Early biomarkers of stroke. Clin Chem 49:1733–1739CrossRefPubMedGoogle Scholar
  33. 33.
    Reiber H (2003) Proteins in cerebrospinal fluid and blood: Barriers, CSF flow rate and source–related dynamics. Restor Neurol Neurosci 21:79–96PubMedGoogle Scholar
  34. 34.
    Sambandam N, Lopaschuk GD (2003) AMP–activated protein kinase (AMPK) control of fatty acid and glucose metabolism in the ischemic heart. Prog Lipid Res 42:238–256 CrossRefPubMedGoogle Scholar
  35. 35.
    van Breda E, Keizer HA, Vork MM, Surtel DA, de Yong YF (1992) Modulation of fatty acid–binding protein content of rat heart and skeletal muscle by endurance training and testosterone treatment. Eur J Physiol 421:274–279CrossRefGoogle Scholar
  36. 36.
    Van Nieuwenhoven FA, Kleine AH, Wodzig KWH, Hermens WT, Kragten HA, Maessen JG, Punt CD, Van Dieijen MP, Van der Vusse GJ, Glatz JFC (1995) Discrimination between myocardial and skeletal muscle injury by assessment of the plasma ration of myoglobin over fatty acid–binding protein. Circulation 92:2848–2854PubMedGoogle Scholar
  37. 37.
    Van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJA, van Gijr J (1988) Interobserver agreement for the assessment of handicap in stroke patients. Stroke 19:604–607PubMedGoogle Scholar
  38. 38.
    Veerkamp JH, Zimmerman AW (2001) Fatty acid–binding proteins of nervous tissue. J Mol Neurosci 16:133–142CrossRefPubMedGoogle Scholar
  39. 39.
    Wunderlich MT, Ebert, AD, Kratz T, Goertler M, Jost S, Herrmann M (1999) Early neurobehavioral outcome after stroke is related to release of neurobiochemical markers of brain damage. Stroke 30:1190–1195PubMedGoogle Scholar
  40. 40.
    Wodzig KWH, Pelsers MMAL, Van der Vusse GJ, Roos W, Glatz JFC (1997) One–step enzyme linked immunosorbent assay (ELISA) for fatty acid–binding protein. Ann Clin Biochem 34:263–268PubMedGoogle Scholar
  41. 41.
    Zimmermann–Ivol C, Burkhard P, Le Floch–Rohr J, Allard L, Hochstrasser D, Sanchez JC (2004) Fatty acid binding protein as a serum marker for the early diagnosis of stroke: a pilot study. Mol Cell Proteomics 3:66–72 CrossRefPubMedGoogle Scholar

Copyright information

© Steinkopff-Verlag 2005

Authors and Affiliations

  • M. T. Wunderlich
    • 1
  • T. Hanhoff
    • 2
  • M. Goertler
    • 1
  • F. Spener
    • 2
  • J.  F. C. Glatz
    • 3
  • C.-W. Wallesch
    • 1
  • M.  M.  A.  L. Pelsers
    • 3
  1. 1.Dept. of Neurology University of MagdeburgMagdeburgGermany
  2. 2.Dept. of Biochemistry University of MuensterMünsterGermany
  3. 3.Dept. of Molecular Genetics Maastricht UniversityMaastrichtThe Netherlands

Personalised recommendations