Journal of Neurology

, Volume 252, Issue 3, pp 321–331

Frontotemporal white matter changes in amyotrophic lateral sclerosis

  • Sharon Abrahams
  • Laura H. Goldstein
  • John Suckling
  • Virginia Ng
  • Andy Simmons
  • Xavier Chitnis
  • Louise Atkins
  • Steve C. R. Williams
  • P. N. Leigh


Cognitive dysfunction can occur in some patients with amyotrophic lateral sclerosis (ALS) who are not suffering from dementia. The most striking and consistent cognitive deficit has been found using tests of verbal fluency. ALS patients with verbal fluency deficits have shown functional imaging abnormalities predominantly in frontotemporal regions using positron emission tomography (PET). This study used automated volumetric voxel-based analysis of grey and white matter densities of structural magnetic resonance imaging (MRI) scans to explore the underlying pattern of structural cerebral change in nondemented ALS patients with verbal fluency deficits. Two groups of ALS patients, defined by the presence or absence of cognitive impairment on the basis of the Written Verbal Fluency Test (ALSi, cognitively impaired, n = 11; ALSu, cognitively unimpaired n = 12) were compared with healthy age matched controls (n = 12). A comparison of the ALSi group with controls revealed significantly (p < 0.002) reduced white matter volume in extensive motor and non–motor regions, including regions corresponding to frontotemporal association fibres. These patients demonstrated a corresponding cognitive profile of executive and memory dysfunction. Less extensive white matter reductions were revealed in the comparison of the ALSu and control groups in regions corresponding to frontal association fibres. White matter volumes were also found to correlate with performance on memory tests. There were no significant reductions in grey matter volume in the comparison of either patient group with controls. The structural white matter abnormalities in frontal and temporal regions revealed here may underlie the cognitive and functional imaging abnormalities previously reported in non–demented ALS patients. The results also suggest that extra–motor structural abnormalities may be present in ALS patients with no evidence of cognitive change. The findings support the hypothesis of a continuum of extra–motor cerebral and cognitive change in this disorder.

Key words

motor neuron disease executive function verbal fluency structural magnetic resonance imaging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abe K, Fujimura H, Toyooka K, Sakoda S, Yorifuji S, Yanagihara T (1997) Cognitive function in amyotrophic lateral sclerosis. J Neurol Sci 148:95–100Google Scholar
  2. 2.
    Abrahams S, Goldstein LH, Kew JJ, Brooks DJ, Lloyd CM, Frith CD, Leigh PN (1996) Frontal lobe dysfunction in amyotrophic lateral sclerosis. A PET study. Brain 119:2105–2120Google Scholar
  3. 3.
    Abrahams S, Goldstein LH, Al-Chalabi A, Pickering A, Morris RG, Passingham RE, Brooks DJ, Leigh PN (1997) Relation between cognitive dysfunction and pseudobulbar palsy in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 62:464–472Google Scholar
  4. 4.
    Abrahams S, Leigh PN, Harvey A, Vythelingum GN, Grise D, Goldstein LH (2000) Verbal fluency and executive dysfunction in amyotrophic lateral sclerosis (ALS). Neuropsychologia 38:734–747Google Scholar
  5. 5.
    Abrahams S, Goldstein LH (2002) Motor Neuron Disease. In: Harrison JE, Owen AM (ed) Cognitive deficits in brain disorders. Martin Dunitz, London, pp 341–358Google Scholar
  6. 6.
    Abrahams S, Goldstein LH, Simmons A, Brammer MJ, Williams SCR, Giampietro V, Leigh PN (in press) Word retrieval in amyotrophic lateral sclerosis: a functional magnetic resonance study. Brain 127:1507–1517Google Scholar
  7. 7.
    Andreadou E, Sgouropoulos P, Varelas P, Gouliamos A, Papageorgiou C (1998) Subcortical frontal lesions on MRI in patients with motor neurone disease. Neuroradiology 40:298–302Google Scholar
  8. 8.
    Benton AL, Varney NR, Hamsher KD (1978) Visuospatial judgment. A clinical test. Arch Neurol 35:364–367PubMedGoogle Scholar
  9. 9.
    Bullmore ET, Suckling J, Overmeyer S, Rabe-Hesketh S, Taylor E, Brammer MJ (1999) Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. IEEE Trans Med Imaging 18:32–42Google Scholar
  10. 10.
    David AS, Gillham RA (1986) Neuropsychological study of motor neuron disease. Psychosomatics 27:441–445Google Scholar
  11. 11.
    Davis C, Ho MY, Bradshaw CM, Szabadi E (2000) Estimation of premorbid performance on Raven’s Standard Progressive Matrices using reading- test performance: new normative data. Clin Neuropsychol Assess 2:113–123Google Scholar
  12. 12.
    Ellis CM, Suckling J, Amaro E Jr, Bullmore ET, Simmons A, Williams SCR, Leigh PN (2001) Volumetric analysis reveals corticospinal tract degeneration and extramotor involvement in ALS. Neurology 57:1571–1578Google Scholar
  13. 13.
    Frank B, Haas J,Heinze HJ, Stark E, Munte TF (1997) Relation of neuropsychological and magnetic resonance findings in amyotrophic lateral sclerosis: evidence for subgroups. Clin Neurol Neurosurg 99:79–86Google Scholar
  14. 14.
    Gallassi R, Montagna P, Morreale A, Lorusso S, Tinuper P, Daidone R, Lugaresi E (1989) Neuropsychological, electroencephalogram and brain computed tomography findings in motor neuron disease. Eur Neurol 29:115–120Google Scholar
  15. 15.
    Goodin DS, Rowley HA, Olney RK (1988) Magnetic resonance imaging in amyotrophic lateral sclerosis. Ann Neurol 23:418–420Google Scholar
  16. 16.
    Hillel AD, Miller RM, Yorkston K, Mc-Donald E, Norris FH, Konikow N (1989) Amyotrophic lateral sclerosis severity scale. Neuroepidemiology 8:142–150Google Scholar
  17. 17.
    Kato S, Hayahi H, Yagishita A (1993) Involvement of the frontotemporal lobe and limbic system in amyotrophic lateral sclerosis: As assessed by serial computed tomography and magnetic resonance imaging. J Neurol Sci 116:52–58Google Scholar
  18. 18.
    Kendrick D (1985) Cognitive tests for the elderly. NFER-Nelson, WindsorGoogle Scholar
  19. 19.
    Kew JJM, Leigh PN (1992) Dementia with motor neuron disease. In: Rosser M (ed) Balleire’s clinical neurology: unusual dementias. Vol. 1. Bailleire Tindal, London, pp 611–626Google Scholar
  20. 20.
    Kew JJM, Goldstein LH, Leigh PN, Abrahams S, Cosgrave N, Passingham RE, Frackowiak RSJ, Brooks DJ (1993) The relationship between abnormalities of cognitive function and cerebral activation in amyotrophic lateral sclerosis: A neuropsychological and positron emission tomography study. Brain 116:1399–1423Google Scholar
  21. 21.
    Kiernan JA, Hudson AJ (1994) Frontal lobe atrophy in motor neuron diseases. Brain 117:747–757Google Scholar
  22. 22.
    Leigh PN, Kew JJM, Goldstein LH, Brooks DJ (1994) The cerebral lesions in amyotrophic lateral sclerosis: new insights from pathology and functional brain imaging. In: Clifford Rose F (ed) Amyotrophic lateral sclerosis from Charcot to the present and into the future. Smith-Gordon, London, pp 191–209Google Scholar
  23. 23.
    Lomen-Hoerth C, Murphy J, Langmore S, Kramer JH, Olney RK, Miller B (2003) Are amyotrophic lateral sclerosis patients cognitively normal. Neurology 60:1094–1097Google Scholar
  24. 24.
    Ludolph AC, Langen KJ, Regard M, Herzog H, Kemper B, Kuwert T, Bottger IG, Feinendegen L (1992) Frontal lobe function in amyotrophic lateral sclerosis: a neuropsychologic and positron emission tomography study. Acta Neurol Scand 85:81–89Google Scholar
  25. 25.
    Massman PJ, Sims J, Cooke N, Haverkamp LJ, Appel V, Appel SH (1996) Prevalence and correlates of neuropsychological deficits in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 61:450–455Google Scholar
  26. 26.
    McAlonan GM, Daly E,Kumari V, Critchley HD, van Amelsvoort T, Suckling J, Simmons A, Sigmundsson T, Greenwood K, Russell A, Schmitz N, Happe F, Howlin P, Murphy DGM (2002) Brain anatomy and sensorimotor gating in Asperger’s syndrome. Brain 127:1594–1606Google Scholar
  27. 27.
    McKenna P, Warrington EK (1983) The Graded Naming Test. NFER-Nelson, Oxford 11Google Scholar
  28. 28.
    Neary D, Snowden JS, Mann DMA (2000) Cognitive change in motor neurone disease/amyotrophic lateral sclerosis (MND/ALS). J Neurol Sci 180:15–20Google Scholar
  29. 29.
    Nelson HE, Willison JR (1991) Restandardisation of the NART against the WAIS-R. NFER-Nelson, WindsorGoogle Scholar
  30. 30.
    Newsom-Davis IC, Lyall RA, Leigh PN, Moxham J, Goldstein LH (2001) The effect of non-invasive positive pressure ventilation (NIPPV) on cognitive function in amyotrophic lateral sclerosis (ALS): A prospective study. J Neurol Neurosurg Psychiatry 71:482–487Google Scholar
  31. 31.
    Okamoto K, Hirai S, Yamazaki T, Sun XY, Nakazato Y (1991) New ubiquitinpositive intraneuronal inclusions in the extra-motor cortices in patients with amyotrophic lateral sclerosis. Neurosci Lett 129:233–236Google Scholar
  32. 32.
    Overmeyer S, Bullmore ET, Suckling J, Simmons A, Williams SCR, Santosh PJ, Taylor E (2001) Distributed grey and white matter deficits in hyperkinetic disorder: MRI evidence for anatomical abnormality in an attentional network. Psychol Med 31:1425–1435Google Scholar
  33. 33.
    Raven JC (1958) Guide to standard progressive matrices. Psychological Corporation, New YorkGoogle Scholar
  34. 34.
    Rafalowska J, Dziewulska D (1996) White matter injury in amyotrophic lateral sclerosis (ALS). Folia Neuropathologica 34:87–91Google Scholar
  35. 35.
    Sigmundsson T, Suckling J, Maier M, Williams SCR, Bullmore ET, Greenwood KE, Fukuda R, Ron MA, Toone BK (2001) Structural abnormalities in frontal, temporal, and limbic regions and interconnecting white matter tracts in schizophrenic patients with prominent negative symptoms. Am J Psychiatry 158:234–243Google Scholar
  36. 36.
    Simmons A, Arridge SR, Barker GJ, Williams SC (1996) Simulation of MRI cluster plots and application to neurological segmentation. Magn Reson Imag 14:73–92Google Scholar
  37. 37.
    Suckling J, Brammer MJ, Lingford- Hughes A, Bullmore ET (1999) Removal of extracerebral tissues in dualecho magnetic resonance images via linear scale-space features. Magn Reson Imag 17:247–256Google Scholar
  38. 38.
    Suckling J, Sigmundsson T, Greenwood K, Bullmore ET (1999) A modified fuzzy clustering algorithm for operator independent brain tissue classification of dual echo MR images. Magn Reson Imag 17:1065–1076Google Scholar
  39. 39.
    Talbot PR, Goulding PJ, Lloyd JJ, Snowden JS, Neary D, Testa HJ (1995) Interrelation between ‘classic’motor neuron disease and frontotemporal dementia: Neuropsychological and single photon emission computed tomography study. J Neurol Neurosurg Psychiatry 58:541–547Google Scholar
  40. 40.
    Van Amelsvoort T, Daly E, Robertson D, Suckling J, Ng V, Critchley H, Owen MJ, Henry J, Murphy KC, Murphy DGM (2001) Structural brain abnormalities associated with deletion at chromosome 22q11: Quantitative neuroimaging study of adults with velo-cardio-facial syndrome. Br J Psychiatry 178:412–419Google Scholar
  41. 41.
    Warrington EK (1984) Recognition memory test. NFER-Nelson, WindsorGoogle Scholar
  42. 42.
    Warrington EK, James M (1991) The visual object and space perception battery. Thames Valley Test Company, Bury St EdmondsGoogle Scholar
  43. 43.
    Wechsler D (1987) Wechsler Memory Scale-Revised. Psychological Corporation, San AntonioGoogle Scholar
  44. 44.
    Yamauchi H, Fukuyama H, Ouchi Y, Nagahama Y,Kimura J, Asato R, Konishi J (1995) Corpus callosum atrophy in amyotrophic lateral sclerosis. J Neurol Sci 134:189–196Google Scholar
  45. 45.
    Zigmond AS, Snaith RP (1983) The hospital anxiety and depression scale. Acta Psychiatr Scand 67:361–370PubMedGoogle Scholar

Copyright information

© Steinkopff Verlag 2005

Authors and Affiliations

  • Sharon Abrahams
    • 1
  • Laura H. Goldstein
    • 2
  • John Suckling
    • 3
  • Virginia Ng
    • 4
  • Andy Simmons
    • 4
  • Xavier Chitnis
    • 5
  • Louise Atkins
    • 4
  • Steve C. R. Williams
    • 4
  • P. N. Leigh
    • 4
  1. 1.Dept. of PsychologyUniversity of EdinburghEdinburgh EH8 9JZScotland
  2. 2.Dept. of PsychologyInstitute of PsychiatryLondon SE5 8AFUK
  3. 3.Dept. of Psychiatry,University of Cambridge Addenbrooke’s HospitalCambridge CB2 2QQUK
  4. 4.Dept. of NeurologyInstitute of PsychiatryLondon SE5 8AFUK
  5. 5.Dept. of Biostatistics and ComputingInstitute of PsychiatryLondon SE5 8AFUK

Personalised recommendations