Journal of Neurology

, Volume 252, Issue 3, pp 283–290 | Cite as

Cerebral metabolic correlates of four dementia scales in Alzheimer’s disease

  • E. Salmon*Email author
  • S. Lespagnard*
  • P. Marique
  • F. Peeters
  • K. Herholz
  • D. Perani
  • V. Holthoff
  • E. Kalbe
  • D. Anchisi
  • S. Adam
  • F. Collette
  • G. Garraux


Different scales can be used to evaluate dementia severity in Alzheimer’s disease (AD). They do assess different cognitive or functional abilities, but their global scores are frequently in mutual correlation. Functional imaging provides an objective method for the staging of dementia severity. Positron emission tomography was used to assess the relationship between brain metabolism and four dementia scales that reflect a patient’s global cognitive abilities (mini mental state), caregiver’s evaluation of cognitive impairment (newly designed scale), daily living functioning (instrumental activities of daily living) and global dementia (clinical dementia rating). We wondered whether different clinical dementia scales would be related to severity of metabolic impairment in the same brain regions, and might reflect impairment of common cognitive processes. 225 patients with probable AD were recruited in a prospective multicentre European study. All clinical scales were related to brain metabolism in associative temporal, parietal or frontal areas. A factorial analysis demonstrated that all scales could be classified in a single factor. That factor was highly correlated to decrease of cerebral activity in bilateral parietal and temporal cortices, precuneus, and left middle frontal gyrus. This finding suggests that global scores for all scales provided similar information on the neural substrate of dementia severity. Capitalizing on the neuroimaging literature, dementia severity reflected by reduced metabolism in posterior and frontal associative areas in AD might be related to a decrease of controlled processes.

Key words

dementia Alzheimer cerebral activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Welsh KA, Butters N, Hughes JP, Mohs RC, Heyman A (1992) Detection and staging of dementia in Alzheimer’s disease. Use of the neuropsychological measures developed for the Consortium to Establish a Registry for Alzheimer’s Disease. Arch Neurol 49:448–452PubMedGoogle Scholar
  2. 2.
    Morris RG (1994) Recent developments in the neuropsychology of dementia. Int Rev Psychiatry 6:85–107Google Scholar
  3. 3.
    Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state: A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–189PubMedGoogle Scholar
  4. 4.
    Rosen W, Mohs R, Davis K (1984) A New Rating Scale for Alzheimer’s disease. Am J Psychiatry 14:1356–1364Google Scholar
  5. 5.
    Lawton M, Brody E (1969) Assessment of Older People: Self Maintaining and Instrumental Activities of Daily Living. Gerontologist 9:179–186PubMedGoogle Scholar
  6. 6.
    Hughes C, Berg L, Danzinger W (1982) A New Clinical Scale for the Staging of Dementia. Br J Psychiatry 140:566–572PubMedGoogle Scholar
  7. 7.
    Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol (Berl) 82:239–259CrossRefPubMedGoogle Scholar
  8. 8.
    Bradley KM, O’Sullivan VT, Soper ND, Nagi Z, King EM, Smith AD, Shepstone BJ (2002) Cerebral perfusion SPET correlated with Braak pathological stage in Alzheimer’s disease. Brain 125:1772–1781CrossRefPubMedGoogle Scholar
  9. 9.
    Frackowiak RSJ, Pozzili C, Legg NJ, Du Boulay GH, Marshall J, Lenzi GL, Jones T (1981) Regional cerebral oxygen supply and utilisation in dementia. A clinical and physiological study with oxygen-15 and positron tomography. Brain 104:753–778PubMedGoogle Scholar
  10. 10.
    Herholz K, Nordberg A, Salmon E, Perani D, Kessler J, Mielke R, Halber M, Jelic V, Almkvist O, Collette F, Alberoni M,Kennedy A, Hasselbalch S, Fazio F, Heiss W-D (1999) Impairment of neocortical metabolism predicts progression in Alzheimer’s disease. Dement Geriatr Cogn Disord 10:494–504PubMedGoogle Scholar
  11. 11.
    APA (1994) Diagnostic and statistical manual of mental disorders (4th Ed). American Psychiatric association, Washington, D.C.Google Scholar
  12. 12.
    Mckhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology 34:939–944PubMedGoogle Scholar
  13. 13.
    Cummings JL (1997) Neuropsychiatric Inventory: assessing psychopathology in dementia patients. Neurology 48(Suppl 6):S10–S16Google Scholar
  14. 14.
    Herholz K, Salmon E, Perani D, Baron JC,Holthoff V, Frölich L, Schönknecht P, Ito K, Mielke R, Kalbe E, Zündorf G, Delbeuck X, Pelati O, Anchisi D, Fazio F, Kerrouche N, Beuthien-Baumann B, Menzel C, Schröder J, Kato T, Arahata Y, Henze M, Heiss WD (2002) Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuro Image 17:302–316PubMedGoogle Scholar
  15. 15.
    Ashford WJ, Kumar V, Barringer M, Becker M, Bice J, Ryan N, Vic S (1992) Assessing Alzheimer’s disease severity with a global clinical scale. Int Psychogeriatr 4(1):55–74CrossRefGoogle Scholar
  16. 16.
    Fazio F, Perani D, Gilardi MC, Colombo F, Cappa SF,Vallar G, Bettinardi V, Paulesu E, Alberoni M, Bressi S, et al. (1992) Metabolic impairment in human amnesia: a PET study of memory networks. J Cereb Blood Flow Metab 12:353–358PubMedGoogle Scholar
  17. 17.
    Kuhl DE, Metter EJ, Riege WH (1985) Patterns of cerebral glucose utilisation in depression, multiple infarct dementia, and Alzheimer’s disease. In: Sokoloff L (ed) Pattern of cerebral glucose utilisation in depression, multiple infarcts and Alzheimer’s disease. Raven Press, New York, pp 211–226Google Scholar
  18. 18.
    Waldemar G, Bruhn P, Kristensen M, Johnsen A, Paulson OB, Lassen NA (1994) Heterogeneity of neocortical cerebral blood flow deficits in dementia of the Alzheimer type: A (99mTc)- d,1-HMPAO SPECT study. J Neurol Neurosurg Psychiatry 57:285–295PubMedGoogle Scholar
  19. 19.
    Haxby JV, Grady CL, Koss E, Horwitz B, Schapiro M, Friedland RP, Rapoport SI (1988) Heterogeneous anterior-posterior metabolic patterns in dementia of Alzheimer type. Neurology 38:1853–1863PubMedGoogle Scholar
  20. 20.
    Mielke R, Herholz K, Grond M, Kessler J, Heiss WD (1991) Differences of regional cerebral glucose metabolism between presenile and senile dementia of Alzheimer type. Neurobiol Aging 13:93–98CrossRefGoogle Scholar
  21. 21.
    Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE (1997) Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 42:85–94CrossRefPubMedGoogle Scholar
  22. 22.
    Ichimiya A, Herholz K, Mielke R, Kessler J, Slansky I, Heiss WD (1994) Difference of regional cerebral metabolic pattern between presenile and senile dementia of Alzheimer type: a factor analytic study. J Neurol Sci 123:11–17CrossRefPubMedGoogle Scholar
  23. 23.
    Salmon E, Collette F, Degueldre C, Lemaire C, Franck G (2000) Voxelbased analysis of confounding effects of age and dementia severity on cerebral metabolism in Alzheimer’s disease. Hum Brain Mapp 10:39–48CrossRefPubMedGoogle Scholar
  24. 24.
    Kawano M, Ichimiya A, Ogomori K, Kuwabara Y, Sasaki M, Yoshid T, Tashiro N (2001) Relationship between both IQ and Mini-Mental State Examination and the regional cerebral glucose metabolism in clinically diagnosed Alzheimer’s disease: a PET study. Dement Geriatr Cogn Disord 12(2):171–176CrossRefPubMedGoogle Scholar
  25. 25.
    Derouesne C, Thibault S, Lorezon P, Baudouin-Madec V, Piquard A, Lacomblez L (2002) Perturbation of daily living in Alzheimer’s disease. A study of 172 patients with the using a questionnaire completed by caregivers. Rev Neurol (Paris) 158(6–7):684–700PubMedGoogle Scholar
  26. 26.
    Glosser G, Gallo J, Duda N, de Vries JJ, Clark CM, Grossman M (2002) Visual perceptual functions predict instrumental activities of daily living in patients with dementia. Neuropsychiatry Neuropsychol Behav Neurol 15(3):198–206PubMedGoogle Scholar
  27. 27.
    Hill RD, Backman L, Fraglioni L (1995) Determinants of functional abilities in dementia. J Am Geriatr Soc 43(10):1092–1097PubMedGoogle Scholar
  28. 28.
    Juva K, Sulkava R, Erkinjuntti T, Ylikoski R, Valvanne J, Tilvis R (1994) Staging the severity of dementia: comparison of clinical (CDR, DSM-III-R), functional (ADL, IADL) and cognitive (MMSE) scales. Acta Neurol Scand 90(4):293–298PubMedGoogle Scholar
  29. 29.
    Morris JC, Ernesto C, Schafer K, Coats M, Leon S, Sano M, Thal LJ, Woodbury P (1997) Clinical dementia rating training and reliability in multicenter studies: the Alzheimer’s Disease Cooperative Study experience. Neurology 48(6):1508–1510PubMedGoogle Scholar
  30. 30.
    Bierer LM, Hof PR, Purohit DP, Carlin L, Schmeidler J, Davis KL, Perl DP (1995) Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer’s disease. Arch Neurol 52(1):81–88PubMedGoogle Scholar
  31. 31.
    Ushijima Y, Okuyama C, Mori S, Nakamura T, Kubota T, Nishimur T (2002) Relationship between cognitive function and regional cerebral blood flow in Alzheimer’ disease. Nucl Med Commun 23(8):779–784CrossRefPubMedGoogle Scholar
  32. 32.
    Kennedy JS, Strauss ME, Smyth KA, Whitehouse PJ (1993) The relationship of clinical psychopathologic rating and cognitive factors to clinical dementia staging. Prog Neuropsychopharmacol Biol Psychiatry 17(5):775–779PubMedGoogle Scholar
  33. 33.
    Laureys S, Antoine S, Boly M, Elincx S, Faymonville ME, Berre J, Sadzot B, Ferring M, De Tiege X, van Bogaert P, Hansen I, Damas P, Mavroudakis N, Lambermont B, Del Fiore G, Aerts J, Degueldre C, Phillips C, Franck G, Vincent JL, Lamy M, Luxen A, Moonen G, Goldman S, Maquet P (2002) Brain function in vegetative state. Acta Neurol Belg 102:177–185PubMedGoogle Scholar
  34. 34.
    Jorm AF (1986) Controlled and automatic information processing in senile dementia: a review. Psychol Med 16(1):77–88PubMedGoogle Scholar
  35. 35.
    Fabrigoule C, Rouch I, Taberly A, Letenneur L, Commenges D, Mazaux JM, Orgogozo JM, Dartigues JF (1998) Cognitive processes in preclinical phase of dementia. Brain 121(pt1):135–141CrossRefPubMedGoogle Scholar
  36. 36.
    Salthouse TA, Becker JT (1998) Independent effects of Alzheimer’s disease on neuropsychological functioning. Neuropsychology 12(2):242–252CrossRefPubMedGoogle Scholar
  37. 37.
    Amieva H, Rouch-Leroyer I, Fabrigoule C, Dartigues JF (2000) Deterioration of controlled process in the preclinical phase dementia: a confirmatory analysis. Dement Geriatr Cogn Disord 11(1):46–52CrossRefPubMedGoogle Scholar
  38. 38.
    Andel R, Gatz M, Pedersen NL, Reynolds CA, Johansson B, Berg S (2001) Deficit in controlled processing may predict dementia: a twin study. J Gerontol B Psychol Sci Soc Sci 56(6):347–355Google Scholar
  39. 39.
    Knight RG (1998) Controlled and automatic memory process in Alzheimer’s disease. Cortex 34(3):427–435PubMedGoogle Scholar
  40. 40.
    Foldi NS, Lobosco JJ, Schaefer LA (2002) The effect of attentional dysfunction in Alzheimer’s disease: theorical and practical implications. Semin Speech Lang 23(2):139–150PubMedGoogle Scholar
  41. 41.
    Perry RJ, Watson P, Hodges JR (2000) The nature and staging of attention dysfunction in early (minimal and mild) Alzheimer’s disease: relationship to episodic and semantic memory impairment. Neuropsychologia 38(3):252–271CrossRefPubMedGoogle Scholar
  42. 42.
    Baddeley AD, Baddeley HA, Bucks RS, Wilcock GK (2001) Attentional control in Alzheimer’s disease. Brain 124(pt 8):1492–1508CrossRefPubMedGoogle Scholar
  43. 43.
    Ojeda N, Ortuno F, Lopez P, Arbizu J, Marti-Climent J, Cervera-Enguix S (2002) Neuroanatomical bases of attention by means of PETH2150: the role of the prefrontal and parietal cortex in controlled processes. Rev Neurol (Paris) 16:35(6):501–507Google Scholar
  44. 44.
    Corbetta M, Miezin F, Schulman G, Petersen S (1993) A PET study of visuospatial attention. J Neurosci 13:1202–1226PubMedGoogle Scholar
  45. 45.
    Mesulam MM (1990) Large-scale cognitive networks and distributed processing for attention, language, and memory. Ann Neurol 28:597–613CrossRefPubMedGoogle Scholar
  46. 46.
    Posner MI, Rothbart MK (1998) Attention, self-regulation and consciousness. Philos Trans R Soc Lond B Biol Sci 353:1915–1927PubMedGoogle Scholar

Copyright information

© Steinkopff Verlag 2005

Authors and Affiliations

  • E. Salmon*
    • 5
    Email author
  • S. Lespagnard*
    • 5
  • P. Marique
    • 5
  • F. Peeters
    • 5
  • K. Herholz
    • 1
    • 2
  • D. Perani
    • 3
  • V. Holthoff
    • 4
  • E. Kalbe
    • 1
    • 2
  • D. Anchisi
    • 3
  • S. Adam
    • 5
  • F. Collette
    • 5
  • G. Garraux
    • 5
  1. 1.Department of Neurology University CologneCologne
  2. 2.Max-Planck Institute for Neurological ResearchCologneGermany
  3. 3.Vita Salute San Raffaele UniversityMilanItaly
  4. 4.Department of Psychiatry and PsychotherapyDresden University of TechnologyDresdenGermany
  5. 5.Cyclotron Research CentreUniversity of LiegeLiegeBelgium

Personalised recommendations