Journal of Neurology

, Volume 251, Issue 12, pp 1472–1480 | Cite as

European validation of a standardized clinical description of multiple sclerosis

  • Maria Pia Amato
  • Jerome Grimaud
  • Iuliana Achiti
  • Maria Letizia Bartolozzi
  • Patrice Adeleine
  • Hans-Peter Hartung
  • Ludwig Kappos
  • Alan Thompson
  • Maria Trojano
  • Sandra Vukusic
  • Christian Confavreux
ORIGINAL COMMUNICATION

Abstract

Objectives

The EDMUS system is a clinical database specifically tailored to the description of multiple sclerosis (MS). The EVALUED (Evaluation of the EDMUS system) study is an European project with two objectives: 1) to assess the inter-examiner reliability of the whole EDMUS system; 2) to validate the EDMUS-Grading Scale (EGS),which is a simplified version of the Kurtzke Disability Status Scale (DSS).

Methods

The protocol included 12 neurologists working in pairs within six European centres (Bari, Basel, Florence, London, Lyon, Würzburg). They assessed independently 30 MS patients in their centre, filling in the EDMUS forms. The reliability of the system was assessed on selected key items in the history of the MS onset, the clinical course and the disease course classification. The clinical examination of the patients permitted an assessment of the Kurtzke Expanded Disability Status Scale (EDSS) and the EGS. Level of agreement was measured in terms of kappa and weighted kappa indexes whenever appropriate.

Results

The study included 180 patients with definite or probable MS of whom 37% were males. Age was 35.8±9.6 years (mean ± SD), disease duration 7.8±5.7 years, and mean EDSS score 4.1±2.2. The disease course was relapsing-remitting in 67%, secondary progressive in 22%, and progressive from disease onset in 11%. For key items of the history, the inter-examiner reliability level ranged from moderate to excellent. Concerning the disability scales, perfect agreement was reached in 59 % for EDSS and 78% for EGS. The close correlation and linear association (r=0.94, p<0.0001) between both scales demonstrated EGS’s construct validity.

Conclusion

The EDMUS system allows a consistent clinical description of MS using a common language. This standardized follow-up of MS patients is valuable especially in studies requiring a critical mass of informative patients.

Key words

multiple sclerosis clinical description standardisation database 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altman DG, Bland JM (1983) Measurement in medicine: the analysis of method comparison studies. Statistician 32:307–317Google Scholar
  2. 2.
    Amato MP, Fratiglioni L, Groppi C, Siracusa G, Amaducci L (1988) Interrater reliability in assessing functional systems and disability on Kurtzke scale in multiple sclerosis. Arch Neurol 45:746–748Google Scholar
  3. 3.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 8:307–310Google Scholar
  4. 4.
    Cohen J (1960) A coefficient of agreement for nominal scales. Educational and psychological measurement 20:37–46Google Scholar
  5. 5.
    Cohen J (1968) Weighted Kappa: nominal scale agreement with provision for scaled disagreement on partial credit. Psychol Bull 70:213–220Google Scholar
  6. 6.
    Confavreux C (1994) Establishment and use of multiple sclerosis registers. Ann Neurol 36:S136–S139Google Scholar
  7. 7.
    Confavreux C, Aimard G, Devic M (1980) Course and prognosis of multiple sclerosis assessed by the computerized data processing of 349 patients. Brain 103:281–300PubMedGoogle Scholar
  8. 8.
    Confavreux C, Compston DAS, Hommes OR, McDonald WI, Thompson AJ (1992) EDMUS, a European database for multiple sclerosis. J Neurol Neurosurg Psychiatry 55:671–676PubMedGoogle Scholar
  9. 9.
    Confavreux C, Hours M, Moreau T, Cortinovis-Tourniaire P, Grimaud J for the participants to EDMUS European Concerted Action (1996) Clinical databasing in multiple sclerosis: EDMUS and the European effort. In: Abramsky O, Ovadia H (eds) Frontiers in Multiple Sclerosis Clinical Research and Therapy. Martin Dunitz Ltd, London, pp 299–312Google Scholar
  10. 10.
    Confavreux C, Hutchinson M, Hours M, Cortinovis-Tourniaire P, Moreau T, and the Pregnancy in Multiple Sclerosis Group (1998) Rate of pregnancy-related relapse rate in multiple sclerosis. N Engl J Med 339:285–291CrossRefPubMedGoogle Scholar
  11. 11.
    Confavreux C, Paty DW (1995) Current status of computerization of multiple sclerosis clinical data for research in Europe and North-America: The EDMUS/MS-COSTAR connection. Neurology 45:573–576Google Scholar
  12. 12.
    Confavreux C, Suissa S, Saddier P, Bourdès V, Vukusic S, and the Vaccines in Multiple Sclerosis Group (2001) Vaccinations and the risk of relapse in multiple sclerosis. N Engl J Med 344:319–326Google Scholar
  13. 13.
    Confavreux C, Vukusic S, Moreau T, Adeleine P (2000) Relapses and progression of disability in multiple sclerosis. N Engl J Med 343:1430–1438CrossRefPubMedGoogle Scholar
  14. 14.
    Confavreux C, Vukusic S, Adeleine P (2003) Early clinical predictors and progression of irreversible disability in multiple sclerosis: an amnesic process. Brain 126:770–782Google Scholar
  15. 15.
    Edan G, Miller DH, Clanet M, Confavreux C, Lyon-Caen O, Lubetzki C, Brochet B, Berry I, Rolland Y, Froment JC, Cabanis E, Iba-Zizen MT, Gandon JM, Lai HM, Moseley I, Sabouraud O (1997) Therapeutic effect of mitoxantrone combined with methylprednisolone in multiple sclerosis: a randomised multicenter study of active disease using MRI and clinical criteria. J Neurol Neurosurg Psychiatry 62:112–118PubMedGoogle Scholar
  16. 16.
    Feinstein AR (1985) Statistical indexes of association. In Feinstein AR (ed) Clinical epidemiology: the architecture of clinical research. WB Saunders Co, PhiladelphiaGoogle Scholar
  17. 17.
    Fleiss JL, Schrout PE (1978) Approximate interval estimation for a certain intraclass correlation coefficient. Psychometrika 43:259–262Google Scholar
  18. 18.
    Francis DA, Bain P, Swan AV, Hughes RAC (1991) An assessment of disability rating scales used in multiple sclerosis. Arch Neurol 48:299–301Google Scholar
  19. 19.
    Gayou A, Brochet B, Dousset V (1997) Transitional progressive multiple sclerosis: a clinical and imaging study. J Neurol Neurosurg Psychiatry 63:396–398Google Scholar
  20. 20.
    Goodkin DE, Cookfair D, Wende K, Bourdette D, Pullicino P, Scherokman B, Whitahm R (1992) Inter- and intrarater scoring agreement using grades 1.0 to 3.5 of the Kurtzke Expanded Disability Status Scale (EDSS). Multiple Sclerosis Collaborative Research Group. Neurology 42:859–863Google Scholar
  21. 21.
    Hobart J, Lamping DL, Thompson A (1996) Evaluating neurological outcome measures: the bare essentials. J Neurol Neurosurg Psychiatry 60:127–130Google Scholar
  22. 22.
    Hobart J, Lamping D, Fitzpatrick R, Riazi A, Thompson A (2001) The Multiple Sclerosis Impact Scale (MSIS-29). A new patient-based outcome measure. Brain 124:962–973Google Scholar
  23. 23.
    Kremenchutzky M, Cottrel DA, Rice GPA, Hader W, Baskerville J, Koopman W, Ebers GC (1999) The natural history of multiple sclerosis: a geographically based study. 7. Progressive-relapsing and relapsing-progressive multiple sclerosis: a re-evaluation. Brain 122:1941–1950Google Scholar
  24. 24.
    Kurtzke JF (1961) On the evaluation of disability in multiple sclerosis. Neurology 11(22):686–694Google Scholar
  25. 25.
    Kurtzke JF (1965) Further notes on disability evaluation in multiple sclerosis, with scale modifications. Neurology 15:654–661Google Scholar
  26. 26.
    Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis and expanded disability status scale (EDSS). Neurology 33:1444–1452PubMedGoogle Scholar
  27. 27.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:15–173Google Scholar
  28. 28.
    Lublin FD, Reingold SC, for the National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trial of New Agents in Multiple Sclerosis (1996) Defining the clinical course of multiple sclerosis: results of an international survey. Neurology 46:907–911Google Scholar
  29. 29.
    Noseworthy JH, Vandenvoort MK, Wong CJ, Ebers GC (1990) Interrater variability with the Expanded Disability Status Scale (EDS) and Functional Systems (FS) in a multiple sclerosis clinical trial. The Canadian Cooperation MS Study Group. Neurology 40:971–975Google Scholar
  30. 30.
    Poser CM, Paty DW, Scheinberg L,Mc-Donald WI, Davis FA, Ebers GC, Johnson KP, Sibley WA, Silberberg DH, Tourtellotte WW (1983) New diagnosis criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 13:227–231PubMedGoogle Scholar
  31. 31.
    Robertson NP, Clayton D, Fraser M, Deans J, Compston DAS (1996) Clinical concordance in sibling pairs with multiple sclerosis. Neurology 47:347–352Google Scholar
  32. 32.
    Rudick R, Antel J, Confavreux C, Cutter G, Ellison G, Fischer J, Lublin F, Miller A, Petkan J, Rao S, Reingold S, Syndulko K, Thompson A, Wallenberg J, Weinshenker B, Willoughby E (1996) Clinical outcomes assessment in multiple sclerosis. Ann Neurol 40:469–479Google Scholar
  33. 33.
    Rudick R, Antel J, Confavreux C, Cutter G, Ellison G, Fischer J, Lublin F, Miller A, Petkan J, Rao S, Reingold S, Syndulko K, Thompson A, Wallenberg J, Weinshenker B, Willoughby E (1997) Recommendations from the National Multiple Sclerosis Society clinical outcomes assessment task force. Ann Neurol 42:379–382Google Scholar
  34. 34.
    Schumacher GA, Beebe G, Kibler RF, et al. (1983) Problems of experimental trials of therapy in MS: report by the panel on the evaluation of experimental trials of therapy in MS. Ann Neurol 13:227–231PubMedGoogle Scholar
  35. 35.
    Sharrack B, Hughes RAC, Soudain S, Dunn G (1999) The psychometric properties of clinical rating scales used in multiple sclerosis. Brain 122:141–159Google Scholar
  36. 36.
    Totaro R, Marini C, Cialfi A, Giunta M, Carolei A (2000) Prevalence of multiple sclerosis in the L’Aquila district, Central Italy. J Neurol Neurosurg Psychiatry 68:349–352Google Scholar
  37. 37.
    Trojano M, Avolio C, Manzari C, De Robertis F, Serio G, Livrea P (1995) Multivariate analysis of predictive factors of multiple sclerosis with a validate method to assess clinical events. J Neurol Neurosurg Psychiatry 58:300–306PubMedGoogle Scholar
  38. 38.
    Trojano M, Avolio C, Simone IL, Defazio G, Manzari C, De Robertis F, Calo A, Livrea P (1996) Soluble intercellular adhesion molecule-1 in serum and cerebrospinal fluid of clinically active relapsing-remitting multiple sclerosis: Correlation with Gd-DTPA magnetic resonance imaging enhancement and cerebrospinal findings. Neurology 47:1535–1541Google Scholar
  39. 39.
    Trojano M, Liguori M, Bosco Zimatore G, Bugarini R, Avolio C, Paolicelli D, Giuliani F, De Robertis F,Marrosu MG, Livrea P (2002) Age-related disability in multiple sclerosis. Ann Neurol 51(4):475–480CrossRefPubMedGoogle Scholar
  40. 40.
    Tukey JW (1977) Tukey exploratory data analysis. In: Reading, MA: Addison, WeseleyGoogle Scholar
  41. 41.
    Weinshenker BG, Bass B, Rice GPA, Noseworthy JH, Carriere W, Baskerville J, Ebers GC (1989) The natural history of multiple sclerosis: a geographically based study. I. Clinical course and disability. Brain 112:133–146PubMedGoogle Scholar
  42. 42.
    Weinshenker BG, Bass B, Rice GPA, Noseworthy JH, Carriere W, Baskerville J, Ebers GC (1989) The natural history of multiple sclerosis: a geographically based study. II. Predictive value of the early clinical course. Brain 112:1419–1428Google Scholar
  43. 43.
    Weinshenker BG, Rice GPA, Noseworthy JH, Carriere W, Baskerville J, Ebers GC (1991) The natural history of multiple sclerosis: a geographically based study. III. Multivariate analysis of predictive factors and models of outcome. Brain 114:1045–1056PubMedGoogle Scholar
  44. 44.
    Willoughby EW, Paty DW (1988) Scales for rating impairment in multiple sclerosis: a critique. Neurology 38:1793–1798Google Scholar

Copyright information

© Steinkopff Verlag 2004

Authors and Affiliations

  • Maria Pia Amato
    • 7
  • Jerome Grimaud
    • 1
  • Iuliana Achiti
    • 2
  • Maria Letizia Bartolozzi
    • 7
  • Patrice Adeleine
    • 3
  • Hans-Peter Hartung
    • 4
  • Ludwig Kappos
    • 5
  • Alan Thompson
    • 1
  • Maria Trojano
    • 6
  • Sandra Vukusic
    • 2
  • Christian Confavreux
    • 2
  1. 1.Institute of NeurologyThe National HospitalLondonUK
  2. 2.Service de Neurologie A and EDMUS Coordinating CenterHôpital NeurologiqueLyonFrance
  3. 3.Unité de Biostatistiques et Informatique MédicaleLyonFrance
  4. 4.Neurologische KlinikHeinrich-Heine-UniversitätDusseldorfGermany
  5. 5.Neurologische UniversitätspoliklinikKantonsspital BaselBaselSwitzerland
  6. 6.Department of NeurologyUniversity of BariBariItaly
  7. 7.Department of Neurological SciencesUniversity of FlorenceFlorenceItaly

Personalised recommendations