Journal of Neurology

, Volume 251, Issue 7, pp 870–876 | Cite as

Marked increase of β-amyloid(1–42) and amyloid precursor protein in ventricular cerebrospinal fluid after severe traumatic brain injury

  • Annika Olsson
  • Ludvig Csajbok
  • Martin Öst
  • Kina Höglund
  • Karin Nylén
  • Lars Rosengren
  • Bengt Nellgård
  • Kaj Blennow
ORIGINAL COMMUNICATION

Abstract.

Severe traumatic brain injury (TBI) may result in widespread damage to axons, termed diffuse axonal injury. Alzheimer’s disease (AD) is characterised by synaptic and axonal degeneration together with senile plaques (SP). SP are mainly composed of aggregated β-amyloid (Aβ), which are peptides derived from the amyloid precursor protein (APP). Apart from TBI in itself being considered a risk factor for AD, severe head injury seems to initiate a cascade of molecular events that are also associated with AD. We have therefore analysed the 42 amino acid forms of Aβ (Aβ(1–42)) and two soluble forms of APP (α-sAPP and ßsAPP) in ventricular cerebrospinal fluid (VCSF) and Aβ(1–42) in plasma from 28 patients in a serial samples 0–11 days after TBI. The levels of α-sAPP, ß-sAPP and Aβ(1–42) were determined using ELISA assays. After TBI, there was a significant stepwise increase in VCSF-Aβ(1–42) up to 1173 % from day 0–1 to day 5–6 and in VCSF-β-sAPP up to 2033 % increase from day 0–1 to day 7–11. There was also a slight but significant increase of VCSF-β-sAPP from day 0–1 to day 5–6 and day 7–11. By contrast, the plasma- Aβ(1–42) level is unchanged after injury. The marked increase in VCSFAβ( 1–42) implies that increased Aβ expression may occur as a secondary phenomenon after TBI with axonal damage. The unchanged level of plasma-Aβ(1–42) in contrast to the marked increase in VCSF-Aβ(1–42) after severe TBI, supports the suggestion that plasma Aβ(1–42) does not reflect Aβ metabolism in the central nervous system (CNS).

Key words

Alzheimer’s disease amyloid precursor protein β-amyloid cerebrospinal fluid traumatic brain injury 

Abbreviations

β-amyloid

AD

Alzheimer’s disease

APLP

amyloid precursor-like proteins

APP

amyloid precursor protein

BBB

blood brain barrier

CT

computed tomography

CNS

central nervous system

GAD

gracile axonal dystrophy

GCS

Glasgow Coma Scale

ICP

intracranial pressure

MRI

magnetic resonance imaging

VCSF

ventricular cerebrospinal fluid

sAPP

soluble amyloid precursor protein

TBI

traumatic brain injury

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blennow K, Ricksten A, Prince JA, Brookes AJ, Emahazion T, Wasslavik C, Bogdanovic N, Andreasen N, Båtsman S, Marcusson J, Nägga K, Wallin A, Regland B, Olofsson H, Hesse C, Davidsson P, Minthon L, Jansson A, Palmqvist L, Rymo L (2000) No association between the alpha2-macroglobulin (A2M) deletion and Alzheimer’s disease, and no change in A2M mRNA, protein, or protein expression. J Neural Transm 107:1065–1079CrossRefPubMedGoogle Scholar
  2. 2.
    De Strooper B, Annaert W (2000) Proteolytic processing and cell biological functions of the amyloid precursor protein. J Cell Sci 113:1857–1870PubMedGoogle Scholar
  3. 3.
    Emmerling MR, Morganti-Kossmann MC, Kossmann T, Stahel PF, Watson MD, Evans LM, Mehta PD, Spiegel K, Kuo YM, Roher AE, Raby CA (2000) Traumatic brain injury elevates the Alzheimer’s amyloid peptide A beta 42 in human CSF. A possible role for nerve cell injury. Ann N Y Acad Sci 903:118–122PubMedGoogle Scholar
  4. 4.
    Furukawa K, Sopher BL, Rydel RE, Begley JG, Pham DG, Martin GM, Fox M,Mattson MP (1996) Increased activity-regulating and neuroprotective efficacy of alpha-secretase-derived secreted amyloid precursor protein conferred by a C-terminal heparinbinding domain. J Neurochem 67:1882–1896PubMedGoogle Scholar
  5. 5.
    Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F, Guido T, Hagopian S, Johnson-Wood K, Khan K, Lee M, Leibowitz P, Lieberburg I, Little S, Masliah E, Mc-Conlogue L, Montoya-Zavala M, Mucke L, Paganini L, Penniman E, Power M, Schenk D, Seubert P, Snyder B, Soriano F, Tan H, Vitale J, Wadsworth S, Wolozin B, Zhao J (1995) Alzheimertype neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 373:523–527CrossRefPubMedGoogle Scholar
  6. 6.
    Gentleman SM, Nash MJ, Sweeting CJ, Graham DI, Roberts GW (1993) Betaamyloid precursor protein (beta APP) as a marker for axonal injury after head injury. Neurosci Lett 160:139–144CrossRefPubMedGoogle Scholar
  7. 7.
    Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890PubMedGoogle Scholar
  8. 8.
    Graham DI, Gentleman SM, Nicoll JA, Royston MC, McKenzie JE, Roberts GW, Griffin WS (1996) Altered beta-APP metabolism after head injury and its relationship to the aetiology of Alzheimer’s disease. Acta Neurochir Suppl (Wien) 66:96–102Google Scholar
  9. 9.
    Grande PO, Asgeirsson B, Nordstrom CH (2002) Volume-targeted therapy of increased intracranial pressure: the Lund concept unifies surgical and non-surgical treatments. Acta Anaesthesiol Scand 46:929–941CrossRefPubMedGoogle Scholar
  10. 10.
    Hamberger A, Huang YL, Zhu H, Bao F, Ding M, Blennow K, Olsson A, Hansson HA, Viano D, Haglid KG (2003) Redistribution of neurofilaments and accumulation of beta-amyloid protein after brain injury by rotational acceleration of the head. J Neurotrauma 20:169–178CrossRefPubMedGoogle Scholar
  11. 11.
    Hesse C, Rosengren L,Vanmechelen E, Vanderstichele H, Jensen C, Davidsson P, Blennow K (2000) Cerebrospinal Fluid Markers for Alzheimer’s Disease Evaluated after Acute Ischemic Stroke. J Alzheimers Dis 2:199–206PubMedGoogle Scholar
  12. 12.
    Horsburgh K, Cole GM, Yang F, Savage MJ, Greenberg BD, Gentleman SM, Graham DI,Nicoll JA (2000) Beta-amyloid (Abeta)42(43), abeta42, abeta40 and apoE immunostaining of plaques in fatal head injury. Neuropathol Appl Neurobiol 26:124–132CrossRefPubMedGoogle Scholar
  13. 13.
    Ichihara N, Wu J, Chui DH, Yamazaki K, Wakabayashi T, Kikuchi T (1995) Axonal degeneration promotes abnormal accumulation of amyloid betaprotein in ascending gracile tract of gracile axonal dystrophy (GAD) mouse. Brain Res 695:173–178CrossRefPubMedGoogle Scholar
  14. 14.
    Iwatsubo T,Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y (1994) Visualization of A beta 42(43) and Abeta40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is Abeta 42(43). Neuron 13:45–53CrossRefPubMedGoogle Scholar
  15. 15.
    Kawarabayashi T, Shoji M, Harigaya Y, Yamaguchi H, Hirai S (1991) Expression of APP in the early stage of brain damage. Brain Res 563:334–338CrossRefPubMedGoogle Scholar
  16. 16.
    Koo EH, Sisodia SS, Archer DR, Martin LJ, Weidemann A, Beyreuther K, Fischer P,Masters CL, Price DL (1990) Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport. Proc Natl Acad Sci U S A 87:1561–1565PubMedGoogle Scholar
  17. 17.
    LeBlanc AC, Xue R, Gambetti P (1996) Amyloid precursor protein metabolism in primary cell cultures of neurons, astrocytes, and microglia. J Neurochem 66:2300–2310PubMedGoogle Scholar
  18. 18.
    Marshall LF, Marshall SB, Klauber MR, Van Berkum Clark M, Eisenberg HM, Jane JA, Luerssen TG, Marmarou A, Foulkes MA (1991) A new classification of head injury based on computerized tomography. J Neurosurg 75:S14–S20Google Scholar
  19. 19.
    Matsubara E, Ghiso J, Frangione B, Amari M, Tomidokoro Y, Ikeda Y, Harigaya Y, Okamoto K, Shoji M (1999) Lipoprotein-free amyloidogenic peptides in plasma are elevated in patients with sporadic Alzheimer’s disease and Down’s syndrome. Ann Neurol 45 537–541CrossRefPubMedGoogle Scholar
  20. 20.
    Maxwell WL, Povlishock JT, Graham DL (1997) A mechanistic analysis of nondisruptive axonal injury: a review. J Neurotrauma 14:419–440PubMedGoogle Scholar
  21. 21.
    Mayeux R, Tang MX, Jacobs DM, Manly J, Bell K, Merchant C, Small SA, Stern Y, Wisniewski HM, Mehta PD (1999) Plasma amyloid beta-peptide 1–42 and incipient Alzheimer’s disease. Ann Neurol 46:412–416CrossRefPubMedGoogle Scholar
  22. 22.
    McKenzie JE, Gentleman SM, Roberts GW, Graham DI, Royston MC (1994) Increased numbers of beta APP-immunoreactive neurones in the entorhinal cortex after head injury. Neuroreport 6:161–164PubMedGoogle Scholar
  23. 23.
    Mehta PD, Pirttila T, Mehta SP, Sersen EA, Aisen PS,W isniewski HM (2000) Plasma and cerebrospinal fluid levels of amyloid beta proteins 1–40 and 1–42 in Alzheimer disease. Arch Neurol 57:100–105CrossRefPubMedGoogle Scholar
  24. 24.
    Ohgami T, Kitamoto T, Tateishi J (1992) Alzheimer’s amyloid precursor protein accumulates within axonal swellings in human brain lesions. Neurosci Lett 136:75–78CrossRefPubMedGoogle Scholar
  25. 25.
    Olsson A, Hoglund K, Sjogren M, Andreasen N, Minthon L, Lannfelt L, Buerger K, Moller HJ, Hampel H, Davidsson P, Blennow K (2003) Measurement of alpha- and beta-secretase cleaved amyloid precursor protein in cerebrospinal fluid from Alzheimer patients. Exp Neurol 183:74–80CrossRefPubMedGoogle Scholar
  26. 26.
    Oltersdorf T, Ward PJ, Henriksson T, Beattie EC, Neve R, Lieberburg I, Fritz LC (1990) The Alzheimer amyloid precursor protein. Identification of a stable intermediate in the biosynthetic/degradative pathway. J Biol Chem 265:4492–4497PubMedGoogle Scholar
  27. 27.
    Otsuka N, Tomonaga M, Ikeda K (1991) Rapid appearance of beta-amyloid precursor protein immunoreactivity in damaged axons and reactive glial cells in rat brain following needle stab injury. Brain Res 568:335–338CrossRefPubMedGoogle Scholar
  28. 28.
    Povlishock JT (1992) Traumatically induced axonal injury: pathogenesis and pathobiological implications. Brain Pathol 2:1–12PubMedGoogle Scholar
  29. 29.
    Raby CA, Morganti-Kossmann MC, Kossmann T, Stahel PF, Watson MD, Evans LM, Mehta PD, Spiegel K, Kuo YM, Roher AE, Emmerling MR (1998) Traumatic brain injury increases betaamyloid peptide 1–42 in cerebrospinal fluid. J Neurochem 71:2505–2509PubMedGoogle Scholar
  30. 30.
    Roberts GW, Allsop D, Bruton C (1990) The occult aftermath of boxing. J Neurol Neurosurg Psychiatry 53:373–378PubMedGoogle Scholar
  31. 31.
    Roberts GW, Gentleman SM, Lynch A, Murray L, Landon M, Graham DI (1994) Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 57:419–425PubMedGoogle Scholar
  32. 32.
    Seubert P, Oltersdorf T, Lee MG, Barbour R, Blomquist C, Davis DL, Bryant K, Fritz LC, Galasko D, Thal LJ, Lieberburg I, Schenk D (1993) Secretion of beta-amyloid precursor protein cleaved at the amino terminus of the beta-amyloid peptide. Nature 361:260–263CrossRefPubMedGoogle Scholar
  33. 33.
    Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, Sinha S, Schlossmacher M, Whaley J, Swindlehurst C, McCormack R,Wolfert R, Selkoe D, Lieberburg I, Schenk D (1992) Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids. Nature 359:325–327CrossRefPubMedGoogle Scholar
  34. 34.
    Siman R, Card JP, Nelson RB, Davis LG (1989) Expression of beta-amyloid precursor protein in reactive astrocytes following neuronal damage. Neuron 3:275–285CrossRefPubMedGoogle Scholar
  35. 35.
    Smith DH, Chen XH, Iwata A, Graham DI (2003) Amyloid beta accumulation in axons after traumatic brain injury in humans. J Neurosurg 98:1072–1077PubMedGoogle Scholar
  36. 36.
    Smith DH, Nakamura M, McIntosh TK, Wang J, Rodriguez A, Chen XH, Raghupathi R, Saatman KE, Clemens J, Schmidt ML, Lee VM, Trojanowski JQ (1998) Brain trauma induces massive hippocampal neuron death linked to a surge in beta-amyloid levels in mice overexpressing mutant amyloid precursor protein. Am J Pathol 153:1005–1010PubMedGoogle Scholar
  37. 37.
    Tamaoka A, Fukushima T, Sawamura N, Ishikawa K, Oguni E, Komatsuzaki Y, Shoji S (1996) Amyloid beta protein in plasma from patients with sporadic Alzheimer’s disease. J Neurol Sci 151:65–68CrossRefGoogle Scholar
  38. 38.
    Tamaoka A, Kondo T, Odaka A, Sahara N, Sawamura N, Ozawa K, Suzuki N, Shoji S,Mori H (1994) Biochemical evidence for the long-tail form (A beta 1-42/43) of amyloid beta protein as a seed molecule in cerebral deposits of Alzheimer’s disease. Biochem Biophys Res Commun 205:834–842CrossRefPubMedGoogle Scholar
  39. 39.
    Teller JK, Russo C, DeBusk LM, Angelini G, Zaccheo D, Dagna-Bricarelli F, Scartezzini P, Bertolini S, Mann DM, Tabaton M, Gambetti P (1996) Presence of soluble amyloid beta-peptide precedes amyloid plaque formation in Down’s syndrome. Nat Med 2:93–95PubMedGoogle Scholar
  40. 40.
    Tokuda T, Ikeda S, Yanagisawa N, Ihara Y, Glenner GG (1991) Re-examination of ex-boxers’ brains using immunohistochemistry with antibodies to amyloid beta-protein and tau protein. Acta Neuropathol (Berl) 82:280–285Google Scholar
  41. 41.
    Uryu K, Laurer H, McIntosh T, Pratico D, Martinez D, Leight S, Lee VM, Trojanowski JQ (2002) Repetitive mild brain trauma accelerates Abeta deposition, lipid peroxidation, and cognitive impairment in a transgenic mouse model of Alzheimer amyloidosis. J Neurosci 22:446–454PubMedGoogle Scholar
  42. 42.
    van Duijn CM, Tanja TA, Haaxma R, Schulte W, Saan RJ, Lameris AJ, Antonides-Hendriks G, Hofman A (1992) Head trauma and the risk of Alzheimer’s disease. Am J Epidemiol 135:775–782PubMedGoogle Scholar
  43. 43.
    Vanderstichele H, Van Kerschaver E, Hesse C, Davidsson P, Buyse MA, Andreasen N, Minthon L, Wallin A, Blennow K,Vanmechelen E (2000) Standardization of measurement of beta-amyloid(1–42) in cerebrospinal fluid and plasma. Amyloid 7:245–258PubMedGoogle Scholar

Copyright information

© Steinkopff Verlag 2004

Authors and Affiliations

  • Annika Olsson
    • 1
  • Ludvig Csajbok
    • 2
  • Martin Öst
    • 2
  • Kina Höglund
    • 1
  • Karin Nylén
    • 3
  • Lars Rosengren
    • 3
  • Bengt Nellgård
    • 2
  • Kaj Blennow
    • 1
  1. 1.Institute of Clinical Neuroscience SectionSahlgrenska University Hospital/MölndalMölndalSweden
  2. 2.Department of Anaesthesia and Intensive Care MedicineSahlgrenska University HospitalGöteborgSweden
  3. 3.Institute of Clinical NeuroscienceSahlgrenska University HospitalGöteborgSweden

Personalised recommendations