Advertisement

Comparison of different iterative CT reconstruction techniques and filtered back projection for assessment of the medial clavicular epiphysis in forensic age estimation

  • Magdalini TozakidouEmail author
  • Ilze Apine
  • Kay U. Petersen
  • Julius Matthias Weinrich
  • Sebastian Schindera
  • Eilin Jopp-van Well
  • Klaus Püschel
  • Jochen Herrmann
Original Article

Abstract

Purpose

To assess the impact of iterative reconstruction and filtered back projection (FBP) on image quality in computed tomography (CT)-based forensic age estimation of the medial clavicular epiphysis.

Methods and materials

CT of the clavicle was performed in 19 patients due to forensic reasons (70 mAs/140 kVp). Raw data were reconstructed with FBP and with an iterative algorithm at level 4 and 6. Clavicular ossification stage was determined by two radiologists in consensus, firstly on FBP reconstructed images and secondly after reviewing all reconstructions including iDose 4 and 6. In addition, the 3 reconstructions were compared regarding artefacts and delineation of the meta-/epiphyseal interface. Quantitative image noise was measured.

Results

Quantitative noise was lower in iDose 6 reconstructed images than in FBP (P < 0.042), but not significantly lower between iDose 4 and FBP (P = 0.127). Side by side comparison revealed lesser qualitative image noise on both iDose reconstructed images than for FBP. The meta-/epiphyseal interface delineation was rated better on both iDose levels than with FBP. In 3 of 19 patients, the clavicular ossification stage was reclassified after iterative reconstructions had been additionally reviewed.

Conclusion

Using iterative CT reconstruction algorithms, a reduction of image noise and an enhancement of image quality regarding the meta-/epiphyseal clavicular interface can be achieved. The study highlights the importance of image standardization as variation of reconstruction technique has impact on forensic age estimation.

Keywords

Iterative reconstruction CT Forensic age estimation Clavicle 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This retrospective study was approved by the local ethics committee with waived informed consent due to the use of anonymized data.

References

  1. 1.
    Wittschieber D, Schulz R, Pfeiffer H, Schmeling A, Schmidt S (2017) Systematic procedure for identifying the five main ossification stages of the medial clavicular epiphysis using computed tomography: a practical proposal for forensic age diagnostics. Int J Legal Med 131(1):217–224.  https://doi.org/10.1007/s00414-016-1444-y CrossRefPubMedGoogle Scholar
  2. 2.
    Wittschieber D, Schulz R, Vieth V, Kuppers M, Bajanowski T, Ramsthaler F, Puschel K, Pfeiffer H, Schmidt S, Schmeling A (2014) The value of sub-stages and thin slices for the assessment of the medial clavicular epiphysis: a prospective multi-center CT study. Forensic sci, med, pathol 10(2):163–169.  https://doi.org/10.1007/s12024-013-9511-x CrossRefGoogle Scholar
  3. 3.
    Schulz R, Muhler M, Mutze S, Schmidt S, Reisinger W, Schmeling A (2005) Studies on the time frame for ossification of the medial epiphysis of the clavicle as revealed by CT scans. Int J Legal Med 119(3):142–145.  https://doi.org/10.1007/s00414-005-0529-9 CrossRefPubMedGoogle Scholar
  4. 4.
    Schmeling A, Dettmeyer R, Rudolf E, Vieth V, Geserick G (2016) In Reply. Dtsch Arztebl Int 113(27-28):488.  https://doi.org/10.3238/arztebl.2016.0488
  5. 5.
    Kellinghaus M, Schulz R, Vieth V, Schmidt S, Schmeling A (2010) Forensic age estimation in living subjects based on the ossification status of the medial clavicular epiphysis as revealed by thin-slice multidetector computed tomography. Int J Legal Med 124(2):149–154.  https://doi.org/10.1007/s00414-009-0398-8 CrossRefPubMedGoogle Scholar
  6. 6.
    Schmeling A, Schulz R, Reisinger W, Muhler M, Wernecke KD, Geserick G (2004) Studies on the time frame for ossification of the medial clavicular epiphyseal cartilage in conventional radiography. Int J Legal Med 118(1):5–8.  https://doi.org/10.1007/s00414-003-0404-5 CrossRefPubMedGoogle Scholar
  7. 7.
    Rudolf E, Kramer J, Schmidt S, Vieth V, Winkler I, Schmeling A (2018) Intraindividual incongruences of medially ossifying clavicles in borderline adults as seen from thin-slice CT studies of 2595 male persons. Int J Legal Med 132(2):629–636.  https://doi.org/10.1007/s00414-017-1694-3 CrossRefPubMedGoogle Scholar
  8. 8.
    Rudolf E, Kramer J, Schmidt S, Vieth V, Winkler I, Schmeling A (2019) Anatomic shape variants of extremitas sternalis claviculae as collected from sternoclavicular thin-slice CT-studies of 2820 male borderline-adults. Int J Legal Med 133(5):1517–1528.  https://doi.org/10.1007/s00414-019-02065-6 CrossRefPubMedGoogle Scholar
  9. 9.
    Hermetet C, Saint-Martin P, Gambier A, Ribier L, Sautenet B, Rerolle C (2018) Forensic age estimation using computed tomography of the medial clavicular epiphysis: a systematic review. Int J Legal Med 132(5):1415–1425.  https://doi.org/10.1007/s00414-018-1847-z CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang K, Fan F, Tu M, Cui JH, Li JS, Peng Z, Deng ZH (2018) The role of multislice computed tomography of the costal cartilage in adult age estimation. Int J Legal Med 132(3):791–798.  https://doi.org/10.1007/s00414-017-1646-y CrossRefPubMedGoogle Scholar
  11. 11.
    Kutanzi KR, Lumen A, Koturbash I, Miousse IR (2016) Pediatric exposures to ionizing radiation: carcinogenic considerations. Int J Environ Res Public Health 13(11):1057.  https://doi.org/10.3390/ijerph13111057 CrossRefPubMedCentralGoogle Scholar
  12. 12.
    (BfS) FOfRP (2016) Reference levels value in diagnostic and interventional radiology (Bekanntmachung der aktualisierten diagnostischen Referenzwerte für diagnostische und interventionelle Röntgenanwendungen). Information Provided by the Federal GovernmentGoogle Scholar
  13. 13.
    (ICRP) ICoRP (2007) Radiological Protection in Medicine. ICRP Publication105 (AnnICRP) 37 (6)Google Scholar
  14. 14.
    Schofield R, King L, Tayal U, Castellano I, Stirrup J, Pontana F, Earls J, Nicol E (2019) Image reconstruction: Part 1 - understanding filtered back projection, noise and image acquisition. Journal of cardiovascular computed tomography.  https://doi.org/10.1016/j.jcct.2019.04.008
  15. 15.
    Tayal U, King L, Schofield R, Castellano I, Stirrup J, Pontana F, Earls J, Nicol E (2019) Image reconstruction in cardiovascular CT: Part 2 - Iterative reconstruction; potential and pitfalls. Journal of cardiovascular computed tomography 13(3):3–10.  https://doi.org/10.1016/j.jcct.2019.04.009 CrossRefPubMedGoogle Scholar
  16. 16.
    Ghetti C, Palleri F, Serreli G, Ortenzia O, Ruffini L (2013) Physical characterization of a new CT iterative reconstruction method operating in sinogram space. Journal of applied clinical medical physics 14(4):4347.  https://doi.org/10.1120/jacmp.v14i4.4347 CrossRefPubMedGoogle Scholar
  17. 17.
    Hoang JK, Yoshizumi TT, Nguyen G, Toncheva G, Choudhury KR, Gafton AR, Eastwood JD, Lowry C, Hurwitz LM (2012) Variation in tube voltage for adult neck MDCT: effect on radiation dose and image quality. AJR Am J Roentgenol 198(3):621–627.  https://doi.org/10.2214/ajr.11.6831 CrossRefPubMedGoogle Scholar
  18. 18.
    Kalra MK, Maher MM, Toth TL, Hamberg LM, Blake MA, Shepard JA, Saini S (2004) Strategies for CT radiation dose optimization. Radiology 230(3):619–628.  https://doi.org/10.1148/radiol.2303021726 CrossRefPubMedGoogle Scholar
  19. 19.
    Kranz PG, Wylie JD, Hoang JK, Kosinski AS (2014) Effect of the CT table strap on radiation exposure and image quality during cervical spine CT. AJNR Am J Neuroradiol 35(10):1870–1876.  https://doi.org/10.3174/ajnr.A4074 CrossRefPubMedGoogle Scholar
  20. 20.
    Namasivayam S, Kalra MK, Pottala KM, Waldrop SM, Hudgins PA (2006) Optimization of Z-axis automatic exposure control for multidetector row CT evaluation of neck and comparison with fixed tube current technique for image quality and radiation dose. AJNR Am J Neuroradiol 27(10):2221–2225PubMedGoogle Scholar
  21. 21.
    Russell MT, Fink JR, Rebeles F, Kanal K, Ramos M, Anzai Y (2008) Balancing radiation dose and image quality: clinical applications of neck volume CT. AJNR Am J Neuroradiol 29(4):727–731.  https://doi.org/10.3174/ajnr.A0891 CrossRefPubMedGoogle Scholar
  22. 22.
    Trattner S, Pearson GDN, Chin C, Cody DD, Gupta R, Hess CP, Kalra MK, Kofler JM Jr, Krishnam MS, Einstein AJ (2014) Standardization and optimization of CT protocols to achieve low dose. J Am Coll Radiol: JACR 11(3):271–278.  https://doi.org/10.1016/j.jacr.2013.10.016 CrossRefPubMedGoogle Scholar
  23. 23.
    Singh S, Kalra MK, Hsieh J, Licato PE, Do S, Pien HH, Blake MA (2010) Abdominal CT: comparison of adaptive statistical iterative and filtered back projection reconstruction techniques. Radiology 257(2):373–383.  https://doi.org/10.1148/radiol.10092212 CrossRefPubMedGoogle Scholar
  24. 24.
    Pontana F, Pagniez J, Flohr T, Faivre JB, Duhamel A, Remy J, Remy-Jardin M (2011) Chest computed tomography using iterative reconstruction vs filtered back projection (Part 1): Evaluation of image noise reduction in 32 patients. Eur Radiol 21(3):627–635.  https://doi.org/10.1007/s00330-010-1990-5 CrossRefPubMedGoogle Scholar
  25. 25.
    Tozakidou M, Reisinger C, Harder D, Lieb J, Szucs-Farkas Z, Muller-Gerbl M, Studler U, Schindera S, Hirschmann A (2018) Systematic radiation dose reduction in cervical spine CT of human cadaveric specimens: how low can we go? AJNR Am J Neuroradiol 39(2):385–391.  https://doi.org/10.3174/ajnr.A5490 CrossRefPubMedGoogle Scholar
  26. 26.
    Gervaise A, Osemont B, Lecocq S, Noel A, Micard E, Felblinger J, Blum A (2012) CT image quality improvement using Adaptive Iterative Dose Reduction with wide-volume acquisition on 320-detector CT. Eur Radiol 22(2):295–301.  https://doi.org/10.1007/s00330-011-2271-7 CrossRefPubMedGoogle Scholar
  27. 27.
    Kellinghaus M, Schulz R, Vieth V, Schmidt S, Pfeiffer H, Schmeling A (2010) Enhanced possibilities to make statements on the ossification status of the medial clavicular epiphysis using an amplified staging scheme in evaluating thin-slice CT scans. Int J Legal Med 124(4):321–325.  https://doi.org/10.1007/s00414-010-0448-2 CrossRefPubMedGoogle Scholar
  28. 28.
    Deak PD, Smal Y, Kalender WA (2010) Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 257(1):158–166.  https://doi.org/10.1148/radiol.10100047 CrossRefPubMedGoogle Scholar
  29. 29.
    Winklehner A, Karlo C, Puippe G, Schmidt B, Flohr T, Goetti R, Pfammatter T, Frauenfelder T, Alkadhi H (2011) Raw data-based iterative reconstruction in body CTA: evaluation of radiation dose saving potential. Eur Radiol 21(12):2521–2526.  https://doi.org/10.1007/s00330-011-2227-y CrossRefPubMedGoogle Scholar
  30. 30.
    Veldhoen S, Laqmani A, Derlin T, Karul M, Hammerle D, Buhk JH, Sehner S, Nagel HD, Chun F, Adam G, Regier M (2014) 256-MDCT for evaluation of urolithiasis: iterative reconstruction allows for a significant reduction of the applied radiation dose while maintaining high subjective and objective image quality. Journal of medical imaging and radiation oncology 58(3):283–290.  https://doi.org/10.1111/1754-9485.12159 CrossRefPubMedGoogle Scholar
  31. 31.
    Muhler M, Schulz R, Schmidt S, Schmeling A, Reisinger W (2006) The influence of slice thickness on assessment of clavicle ossification in forensic age diagnostics. Int J Legal Med 120(1):15–17.  https://doi.org/10.1007/s00414-005-0010-9 CrossRefPubMedGoogle Scholar
  32. 32.
    Scharte P, Vieth V, Schulz R, Ramsthaler F, Puschel K, Bajanowski T, Pfeiffer H, Schmeling A, Schmidt S, Wittschieber D (2017) Comparison of imaging planes during CT-based evaluation of clavicular ossification: a multi-center study. Int J Legal Med 131(5):1391–1397.  https://doi.org/10.1007/s00414-017-1615-5 CrossRefPubMedGoogle Scholar
  33. 33.
    Rudolf E, Kramer J, Winkler I, Schmeling A (2019) Technical note: utilization of 3D-rendering for CT evaluation of extremitas sternalis claviculae within medical age assessment practice. Int J Legal Med 133(3):931–934.  https://doi.org/10.1007/s00414-019-02025-0 CrossRefPubMedGoogle Scholar
  34. 34.
    Omoumi P, Verdun FR, Guggenberger R, Andreisek G, Becce F (2015) Dual-energy CT: basic principles, technical approaches, and applications in musculoskeletal imaging (Part 2). Semin Musculoskelet Radiol 19(5):438–445.  https://doi.org/10.1055/s-0035-1569252 CrossRefPubMedGoogle Scholar
  35. 35.
    Omoumi P, Verdun FR, Ben Salah Y, Vande Berg BC, Lecouvet FE, Malghem J, Ott JG, Meuli R, Becce F (2014) Low-dose multidetector computed tomography of the cervical spine: optimization of iterative reconstruction strength levels. Acta Radiol 55(3):335–344.  https://doi.org/10.1177/0284185113494981 CrossRefPubMedGoogle Scholar
  36. 36.
    Jurik AG, Jensen LC, Hansen J (1996) Radiation dose by spiral CT and conventional tomography of the sternoclavicular joints and the manubrium sterni. Skelet Radiol 25(5):467–470CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Diagnostic and Interventional Radiology and Nuclear medicine, Section of Pediatric RadiologyUniversity Hospital Hamburg-EppendorfHamburgGermany
  2. 2.Children Clinical University HospitalRigaLatvia
  3. 3.Department of Psychiatry and PsychotherapyUniversity Hospital TübingenTübingenGermany
  4. 4.Department of Diagnostic and Interventional Radiology and Nuclear medicineUniversity Hospital Hamburg-EppendorfHamburgGermany
  5. 5.Cantonal Hospital AarauAarauSwitzerland
  6. 6.Department of Forensic MedicineUniversity Hospital Hamburg-EppendorfHamburgGermany

Personalised recommendations