Advertisement

Forensic pathological study on temporal appearance of dendritic cells in skin wounds

  • Yumi Kuninaka
  • Yuko Ishida
  • Mizuho Nosaka
  • Emi Shimada
  • Akihiko Kimura
  • Mitsunori Ozaki
  • Satoshi Hata
  • Tomomi Michiue
  • Hiroki Yamamoto
  • Fukumi Furukawa
  • Wolfgang Eisenmenger
  • Toshikazu KondoEmail author
Original Article

Abstract

Dendritic cells (DCs) can essentially contribute to innate and adaptive immune system in various organs. A double-color immunofluorescence analysis was carried out with anti-CD11c and -HLA-DRα antibodies to detect DCs in 53 skin wounds (their postinfliction intervals: group I, 0–3 days; group II, 4–7 days; group III, 9–14 days; and group IV, 17–21 days). CD11c+HLA-DRα+ DCs were first observed in skin wounds with postinfliction intervals of 3 days, and the DC numbers were found to be elevated in skin wounds with the subsequent increase in postinfliction intervals. Semi-quantitative morphometric analyses showed that the DC number was the highest in the 12-day-old wound. More than 50 DCs were present in 8 of 10 samples (80%) in group II and 14 of 16 samples (87.5%) in group III, and there was no difference between the two groups. Thus, the presence of DCs in a skin wound was possibly estimated as postinfliction intervals of at least 3 days. Furthermore, when a skin wound contained > 50 DCs, its age would be judged as 4–14 days. Collectively, the appearance of DCs in human skin wounds may provide useful information in determining the age of a wound.

Keywords

Forensic pathology Dendritic cells Wound age determination 

Notes

Acknowledgments

We sincerely thank Ms. Mariko Kawaguchi for her excellent assistance in preparing this manuscript.

Funding information

This study was financially supported by a Grant-in-Aid for Scientific Research (A) and Exploratory Research from the Ministry of Education, Science, Sports, and Culture of Japan.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Japanese Society for Forensic Pathology.

Informed consent

No informed consent was required.

References

  1. 1.
    Kondo T (2007) Timing of skin wounds. Leg Med (Tokyo) 9(2):109–114CrossRefGoogle Scholar
  2. 2.
    Kondo T, Ishida Y (2010) Molecular pathology of wound healing. Forensic Sci Int 203(1-3):93–98CrossRefGoogle Scholar
  3. 3.
    Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341(10):738–746CrossRefGoogle Scholar
  4. 4.
    Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83(3):835–870CrossRefGoogle Scholar
  5. 5.
    Gauchotte G, Wissler MP, Casse JM, Pujo J, Minetti C, Gisquet H, Vigouroux C, Plénat F, Vignaud JM, Martrille L (2013) FVIIIra, CD15, and tryptase performance in the diagnosis of skin stab wound vitality in forensic pathology. Int J Legal Med 127(5):957–965CrossRefGoogle Scholar
  6. 6.
    Ishida Y, Kuninaka Y, Nosaka M, Shimada E, Hata S, Yamamoto H, Hashizume Y, Kimura A, Furukawa F, Kondo T (2018) Forensic application of epidermal AQP3 expression to determination of wound vitality in human compressed neck skin. Int J Legal Med 132(5):1375–1380CrossRefGoogle Scholar
  7. 7.
    Ishida Y, Kuninaka Y, Nosaka M, Kimura A, Kawaguchi T, Hama M, Sakamoto S, Shinozaki K, Eisenmenger W, Kondo T (2015) Immunohistochemical analysis on MMP-2 and MMP-9 for wound age determination. Int J Legal Med 129(5):1043–1048CrossRefGoogle Scholar
  8. 8.
    Cecchi R (2010) Estimating wound age: looking into the future. Int J Legal Med 124(6):523–536CrossRefGoogle Scholar
  9. 9.
    Hernández-Cueto C, Girela E, Sweet DJ (2000) Advances in the diagnosis of wound vitality: a review. Am J Forensic Med Pathol 21(1):21–31CrossRefGoogle Scholar
  10. 10.
    Hayashi T, Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T (2004) Forensic application of VEGF expression to skin wound age determination. Int J Legal Med 118(6):320–325CrossRefGoogle Scholar
  11. 11.
    Kondo T, Ohshima T, Mori R, Guan DW, Ohshima K, Eisenmenger W (2002) Immunohistochemical detection of chemokines in human skin wounds and its application to wound age determination. Int J Legal Med 116(2):87–91CrossRefGoogle Scholar
  12. 12.
    Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T (2008) Expression of oxygen-regulated protein 150 (ORP150) in skin wound healing and its application for wound age determination. Int J Legal Med 122(5):409–414CrossRefGoogle Scholar
  13. 13.
    Kondo T, Ohshima T (1996) The dynamics of inflammatory cytokines in the healing process of mouse skin wound: a preliminary study for possible wound age determination. Int J Legal Med 108(5):231–236CrossRefGoogle Scholar
  14. 14.
    Kondo T, Ohshima T, Eisenmenger W (1999) Immunohistochemical and morphometrical study on the temporal expression of interleukin-1α (IL-1α) in human skin wounds for forensic wound age determination. Int J Legal Med 112(4):249–252CrossRefGoogle Scholar
  15. 15.
    Nosaka M, Ishida Y, Kimura A, Kondo T (2010) Time-dependent organic changes of intravenous thrombi in stasis-induced deep vein thrombosis model and its application to thrombus age determination. Forensic Sci Int 195(1-3):143–147CrossRefGoogle Scholar
  16. 16.
    Gibran NS, Heimbach DM, Holbrook KA (1995) Immunolocalization of FXIIIa+ dendritic cells in human burn wounds. J Surg Res 59(3):378–386CrossRefGoogle Scholar
  17. 17.
    Gao N, Yin J, Yoon GS, Mi QS, Yu FS (2011) Dendritic cell-epithelium interplay is a determinant factor for corneal epithelial wound repair. Am J Pathol 179(5):2243–2253CrossRefGoogle Scholar
  18. 18.
    J, Meller S, Conrad C, Di Nardo A, Homey B, Lauerma A, Arai N, Gallo RL, Digiovanni J, Gilliet M (2010) Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons. J Exp Med 207(13):2921-2930CrossRefGoogle Scholar
  19. 19.
    Vinish M, Cui W, Stafford E, Bae L, Hawkins H, Cox R, Toliver-Kinsky T (2016) Dendritic cells modulate burn wound healing by enhancing early proliferation. Wound Repair Regen 24(1):6–13CrossRefGoogle Scholar
  20. 20.
    Zaba LC, Fuentes-Duculan J, Steinman RM, Krueger JG, Lowes MA (2007) Normal human dermis contains distinct populations of CD11c+BDCA-1+ dendritic cells and CD163+FXIIIA+ macrophages. J Clin Invest 117(9):2517–2525CrossRefGoogle Scholar
  21. 21.
    Zaba LC, Krueger JG, Lowes MA (2009) Resident and "inflammatory" dendritic cells in human skin. J Invest Dermatol 129(2):302–308CrossRefGoogle Scholar
  22. 22.
    Meunier L, Gonzalez-Ramos A, Cooper KD (1993) Heterogeneous populations of class II MHC+ cells in human dermal cell suspensions. Identification of a small subset responsible for potent dermal antigen-presenting cell activity with features analogous to Langerhans cells. J Immunol 151(8):4067–4080PubMedGoogle Scholar
  23. 23.
    Zaba LC, Cardinale I, Gilleaudeau P, Sullivan-Whalen M, Suárez-Fariñas M, Fuentes-Duculan J, Novitskaya I, Khatcherian A, Bluth MJ, Lowes MA, Krueger JG (2007) Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med 204(13):3183–3194CrossRefGoogle Scholar
  24. 24.
    Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T (2009) Detection of fibrocytes in human skin wounds and its application for wound age determination. Int J Legal Med 123(4):299–304CrossRefGoogle Scholar
  25. 25.
    Ishida Y, Kimura A, Nosaka M, Kuninaka Y, Shimada E, Yamamoto H, Nishiyama K, Inaka S, Takayasu T, Eisenmenger W, Kondo T (2015) Detection of endothelial progenitor cells in human skin wounds and its application for wound age determination. Int J Legal Med 129(5):1049–1054CrossRefGoogle Scholar
  26. 26.
    Shortman K, Naik SH (2007) Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol 7(1):19–30CrossRefGoogle Scholar
  27. 27.
    Bacci S, Defraia B, Cinci L, Calosi L, Guasti D, Pieri L, Lotti V, Bonelli A, Romagnoli P (2014) Immunohistochemical analysis of dendritic cells in skin lesions: correlations with survival time. Forensic Sci Int 244:179–185CrossRefGoogle Scholar
  28. 28.
    Ishida Y, Kimura A, Nosaka M, Kuninaka Y, Takayasu T, Eisenmenger W, Kondo T (2012) Immunohistochemical analysis on cyclooxygenase-2 for wound age determination. Int J Legal Med 126(3):435–440CrossRefGoogle Scholar
  29. 29.
    Ishida Y, Kuninaka Y, Furukawa F, Kimura A, Nosaka M, Fukami M, Yamamoto H, Kato T, Shimada E, Hata S, Takayasu T, Eisenmenger W, Kondo T (2018) Immunohistochemical analysis on aquaporin-1 and aquaporin-3 in skin wounds from the aspects of wound age determination. Int J Legal Med 132(1):237–242CrossRefGoogle Scholar
  30. 30.
    Betz P, Eisenmenger W (1996) Morphometrical analysis of hemosiderin deposits in relation to wound age. Int J Legal Med 108(5):262–264CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yumi Kuninaka
    • 1
  • Yuko Ishida
    • 1
  • Mizuho Nosaka
    • 1
  • Emi Shimada
    • 1
  • Akihiko Kimura
    • 1
  • Mitsunori Ozaki
    • 2
  • Satoshi Hata
    • 1
  • Tomomi Michiue
    • 1
  • Hiroki Yamamoto
    • 1
  • Fukumi Furukawa
    • 1
  • Wolfgang Eisenmenger
    • 3
  • Toshikazu Kondo
    • 1
    Email author
  1. 1.Department of Forensic MedicineWakayama Medical UniversityWakayamaJapan
  2. 2.Department of Neurological SurgeryWakayama Medical UniversityWakayamaJapan
  3. 3.Institute of Legal MedicineUniversity of MunichMunichGermany

Personalised recommendations