Advertisement

Estimation of the number of contributors to mixed samples of DNA by mitochondrial DNA analyses using massively parallel sequencing

  • Hiroaki NakanishiEmail author
  • Koji Fujii
  • Hiroaki Nakahara
  • Natsuko Mizuno
  • Kazumasa Sekiguchi
  • Katsumi Yoneyama
  • Masaaki Hara
  • Aya Takada
  • Kazuyuki Saito
Original Article

Abstract

We evaluated whether the number of contributors to mixed DNA samples can be estimated by analyzing the D-loop of mitochondrial DNA using massively parallel sequencing. The A- (positions 16,209–16,400) and B- (positions 30–284) amplicons in hypervariable regions 1 and 2, respectively, were sequenced using MiSeq with 2 × 251 cycles. Sequence extraction and trimming were performed using CLC Genomics Workbench 11 and the number of observed haplotypes was counted for each amplicon type using Microsoft Excel. The haplotype ratios were calculated by dividing the number of counted reads of the corresponding haplotype by the total number of sequence reads. Haplotypes that were over the threshold (5%) were defined as positive haplotypes. The number of larger positive haplotypes in either of the two amplicon types was defined as the number of contributors. Samples were collected from seven individuals. Seventeen mixed samples were prepared by mixing DNA from two to five contributors at various ratios. The number of contributors was correctly estimated from almost all of the mixed samples containing equal amounts of DNA from two to five people. In mixed samples of two or three people, the minor components were detected down to a ratio of 20:1 or 8:2:1. However, heteroplasmy, base deletions, and sharing of the same haplotypes caused incorrect estimations of the number of contributors. Although this method still has room for improvement, it may be useful for estimating the number of contributors in a mixed sample, as it does not rely on forensic mathematics.

Keywords

Number of contributors Mixed DNA Mitochondrial DNA Massively parallel sequencing 

Notes

Acknowledgments

The authors thank Dr. Hajime Miyaguchi (National Research Institute of Police Science) for his help with the MiSeq analyses.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Informed consent

Informed consent was obtained from all of the participants.

Ethics approval

This study was approved by the Ethics Committee of Juntendo University School of Medicine (No. 2016134).

Supplementary material

414_2019_2182_MOESM1_ESM.pptx (84 kb)
ESM 1 (PPTX 84 kb)
414_2019_2182_MOESM2_ESM.pptx (85 kb)
ESM 2 (PPTX 84 kb)
414_2019_2182_MOESM3_ESM.pptx (287 kb)
ESM 3 (PPTX 286 kb)

References

  1. 1.
    Bleka Ø, Storvik G, Gill P (2016) EuroForMix: an open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts. Forensic Sci Int Genet 21:35–44.  https://doi.org/10.1016/j.fsigen.2015.11.008 CrossRefPubMedGoogle Scholar
  2. 2.
    Manabe S, Morimoto C, Hamano Y, Fujimoto S, Tamaki K (2017) Development and validation of open-source software for DNA mixture interpretation based on a quantitative continuous model. PLoS ONE 12(11):e0188183.  https://doi.org/10.1371/journal.pone.0188183 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Marsden CD, Rudin N, Inman K, Lohmueller KE (2016) An assessment of the information content of likelihood ratios derived from complex mixtures. Forensic Sci Int Genet 22:64–72.  https://doi.org/10.1016/j.fsigen.2016.01.008 CrossRefPubMedGoogle Scholar
  4. 4.
    Mitchell AA, Tamariz J, O’Connell K, Ducasse N, Budimlija Z, Prinz M, Caragine T (2012) Validation of a DNA mixture statistics tool incorporating allelic drop-out anddrop-in. Forensic Sci Int Genet 6:749–761.  https://doi.org/10.1016/j.fsigen.2012.08.007 CrossRefPubMedGoogle Scholar
  5. 5.
    Inman K, Rudin N, Cheng K, Robinson C, Kirschner A, Inman-Semerau L, Lohmueller KE (2015) Lab Retriever: a software tool for calculating likelihood ratios incorporating a probability of drop-out for forensic DNA profiles. BMC Bioinformatics 16:298.  https://doi.org/10.1186/s12859-015-0740-8 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Manabe S, Mori Y, Kawai C, Ozeki M, Tamaki K (2013) Mixture interpretation: experimental and simulated reevaluation of qualitative analysis. Legal Med 15:66–71.  https://doi.org/10.1016/j.legalmed.2012.09.001 CrossRefPubMedGoogle Scholar
  7. 7.
    Parson W, Ballard D, Budowle B, Butler JM, Gettings KB, Gill P, Gusmão L, Hares DR, Irwin JA, King JL, Knijff P, Morling N, Prinz M, Schneider PM, Neste CV, Willuweit S, Phillips C (2016) Massively parallel sequencing of forensic STRs: considerations of the DNA commission of the International Society for Forensic Genetics (ISFG) on minimal nomenclature requirements. Forensic Sci. Int. Genet. 22:54–63.  https://doi.org/10.1016/j.fsigen.2016.01.009 CrossRefPubMedGoogle Scholar
  8. 8.
    Warshauer DH, Lin D, Hari K, Jain R, Davis C, LaRue B, King JL, Budowle B (2013) STRait Razor: a length-based forensic STR allele-calling tool for use with second generation sequencing data. Forensic Sci Int Genet 7:409–417.  https://doi.org/10.1016/j.fsigen.2013.04.005 CrossRefPubMedGoogle Scholar
  9. 9.
    Jäger AC, Alvarez ML, Davis CP, Guzmán E, Han Y, Way L, Walichiewicz P, Silva D, Pham N, Caves G, Bruand J, Schlesinger F, Pond SJK, Varlaro J, Stephens KM, Holt CL (2017) Developmental validation of the MiSeq FGx forensic genomics system for targeted next generation sequencing in forensic DNA casework and database laboratories. Forensic Sci Int Genet 28:52–70.  https://doi.org/10.1016/j.fsigen.2017.01.011 CrossRefPubMedGoogle Scholar
  10. 10.
    Guo F, Zhou Y, Song H, Zhao J, Shen H, Zhao B, Liu F, Jiang X (2016) Next generation sequencing of SNPs using the HID-Ion AmpliSeqTM Identity Panel on the Ion Torrent PGMTM platform. Forensic Sci Int Genet 25:73–84.  https://doi.org/10.1016/j.fsigen.2016.07.021 CrossRefPubMedGoogle Scholar
  11. 11.
    Pakstis AJ, Speed WC, Fang R, Hyland FCL, Furtado MR, Kidd JR, Kidd KK (2010) SNPs for a universal individual identification panel. Hum Genet 127:315–324.  https://doi.org/10.1007/s00439-009-0771-1 CrossRefPubMedGoogle Scholar
  12. 12.
    Nakanishi H, Pereira V, Børsting C, Yamamoto T, Tvedebrink T, Hara M, Takada A, Saito K, Morling N (2018) Analysis of mainland Japanese and Okinawan Japanese populations using the precision ID Ancestry Panel. Forensic Sci Int Genet 33:106–109.  https://doi.org/10.1016/j.fsigen.2017.12.004 CrossRefPubMedGoogle Scholar
  13. 13.
    Parson W, Strobl C, Huber G, Zimmermann B, Gomes SM, Souto L, Fendt L, Delport R, Langit R, Wootton S, Lagacé R, Irwin J (2013) Reprint of: Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM). Forensic Sci Int Genet 7:632–639.  https://doi.org/10.1016/j.fsigen.2013.09.007 CrossRefPubMedGoogle Scholar
  14. 14.
    King JL, LaRue BL, Novroski NM, Stoljarova M, Seo SB, Zeng X, Warshauer DH, Davis CP, Parson W, Sajantila A, Budowle B (2014) High-quality and high-throughput massively parallel sequencing of the human mitochondrial genome using the Illumina MiSeq. Forensic Sci Int Genet 12:128–135.  https://doi.org/10.1016/j.fsigen.2014.06.001 CrossRefPubMedGoogle Scholar
  15. 15.
    Davis C, Peters D, Warshauer D, King J, Budowle B (2015) Sequencing the hypervariable regions of human mitochondrial DNA using massively parallel sequencing: Enhanced data acquisition for DNA samples encountered in forensic testing. Legal Med 17:123–127.  https://doi.org/10.1016/j.legalmed.2014.10.004 CrossRefPubMedGoogle Scholar
  16. 16.
    McElhoe JA, Holland MM, Makova KD, Su MS, Paul IM, Baker CH, Faith SA, Young B (2014) Development and assessment of an optimized next-generation DNA sequencing approach for the mtgenome using the Illumina MiSeq. Forensic Sci Int Genet 13:20–29.  https://doi.org/10.1016/j.fsigen.2014.05.007 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mikkelsen M, Frank-Hansen R, Hansen AJ, Morling N (2014) Massively parallel pyrosequencing of the mitochondrial genome with the 454 methodology in forensic genetics. Forensic Sci Int Genet 12:30–37.  https://doi.org/10.1016/j.fsigen.2014.03.014 CrossRefPubMedGoogle Scholar
  18. 18.
    Churchill JD, Stoljarova M, King JL, Budowle B (2018) Massively parallel sequencing-enabled mixture analysis of mitochondrial DNA samples. Int J Legal Med 132:1263–1272.  https://doi.org/10.1007/s00414-018-1799-3 CrossRefPubMedGoogle Scholar
  19. 19.
    Kim H, Erlich HA, Calloway CD (2015) Analysis of mixtures using next generation sequencing of mitochondrial DNA hypervariable regions. Croat Med J 56:208–217.  https://doi.org/10.3325/cmj.2015.56.208 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Peck MA, Sturk-Andreaggi K, Thomas JT, Oliver RS, Barritt-Ross S, Marshall C (2018) Developmental validation of a Nextera XT mitogenome Illumina MiSeq sequencing method for high-quality samples. Forensic Sci Int Genet 34:25–36.  https://doi.org/10.1016/j.fsigen.2018.01.004 CrossRefPubMedGoogle Scholar
  21. 21.
    Peck MA, Brandhagen MD, Marshall C, Diegoli TM, Irwin JA, Sturk-Andreaggi K (2016) Concordance and reproducibility of a next generation mtGenome sequencing method for high-quality samples using the Illumina MiSeq. Forensic Sci Int Genet 24:103–111.  https://doi.org/10.1016/j.fsigen.2016.06.003 CrossRefPubMedGoogle Scholar
  22. 22.
    Holland MM, Wilson LA, Copeland S, Dimick G, Holland CA, Bever R, McElhoe JA (2017) MPS analysis of the mtDNA hypervariable regions on the MiSeq with improved enrichment. Int J Legal Med 131:919–931.  https://doi.org/10.1007/s00414-017-1530-9 CrossRefPubMedGoogle Scholar
  23. 23.
    Nakahara H, Sekiguchi K, Imaizumi K, Mizuno N, Kasai K (2008) Heteroplasmies detected in an amplified mitochondrial DNA control region from a small amount of template. J Forensic Sci 53:306–311.  https://doi.org/10.1111/j.1556-4029.2007.00655.x CrossRefPubMedGoogle Scholar
  24. 24.
    Sekiguchi K, Imaizumi K, Matsuda H, Mizuno N, Yoshida K, Senju H, Sato H, Kasai K (2003) MtDNA sequence analysis using capillary electrophoresis and its application to the analysis of mtDNA in hair. Jpn J Sci Tech Iden 7:123–130.  https://doi.org/10.3408/jasti.7.123 CrossRefGoogle Scholar
  25. 25.
    Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative GenomicsViewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192.  https://doi.org/10.1093/bib/bbs017 CrossRefPubMedGoogle Scholar
  26. 26.
    Santos C, Sierra B, Alvarez L, Ramos A, Fernández E, Nogués R, Aluja MP (2008) Frequency and pattern of heteroplasmy in the control region of human mitochondrial DNA. J Mol Evol 67:191–200.  https://doi.org/10.1007/s00239-008-9138-9 CrossRefPubMedGoogle Scholar
  27. 27.
    Wang DY, Chang CW, Lagacé RE, Calandro LM, Hennessy LK (2012) Developmental validation of the AmpFℓSTR® Identifiler® Plus PCR Amplification Kit: an established multiplex assay with improved performance. J Forensic Sci 57:453–465.  https://doi.org/10.1111/j.1556-4029.2011.01963.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hiroaki Nakanishi
    • 1
    Email author
  • Koji Fujii
    • 2
  • Hiroaki Nakahara
    • 2
  • Natsuko Mizuno
    • 2
  • Kazumasa Sekiguchi
    • 2
  • Katsumi Yoneyama
    • 3
  • Masaaki Hara
    • 3
  • Aya Takada
    • 3
  • Kazuyuki Saito
    • 1
  1. 1.Department of Forensic MedicineJuntendo University School of MedicineTokyoJapan
  2. 2.National Research Institute of Police ScienceChibaJapan
  3. 3.Department of Forensic MedicineSaitama Medical UniversitySaitamaJapan

Personalised recommendations