Advertisement

The application of autophagy to thrombus age estimation in murine deep vein thrombosis model

  • Mizuho Nosaka
  • Yuko Ishida
  • Yumi Kuninaka
  • Akira Taruya
  • Akihiko Kimura
  • Emi Shimada
  • Hiroki Yamamoto
  • Tomomi Michiue
  • Fukumi Furukawa
  • Toshikazu KondoEmail author
Original Article

Abstract

We immunohistochemically examined the intrathrombotic dynamics of autophagy during thrombogenesis using murine deep vein thrombosis (DVT) models. To perform the immunohistochemical analyses, we used anti-LC3 antibody and anti-p62 antibody for detecting the intrathrombotic autophagic functions. We estimated dynamics of the intrathrombotic autophagy as LC3+ cell number (×1000, five fields) with the thrombus ages (each group n = 5). The number of LC3+ cells was once decreased at 3 days, and then increased until 10 days. On the contrary, the number of p62+ cells progressively increased until 10 days after the inferior vena cava (IVC) ligation, and then gradually decreased. Especially, in all of thrombus samples with the postligation intervals of 5–10 days, both numbers were larger than 10. Subsequently, we compared the number of LC3+ cells to that of p62+ cells. Although, at 1 day after the IVC ligation, LC3+ cell number significantly exceeded p62+ cell number, the former was significantly or relatively less than the latter at 3 days or more after the IVC ligation. Thus, positive cells of > 10 in both LC3 and p62 indicated the thrombus age of 5–10 days. Upon comparison of immunopositive cells in LC3 and p62, the p62/LC3 ratio was > 1.0 in 29 out of 30 thrombus samples aged 3–21 days, and all of 1-day-old thrombus had the p62/LC3 ratio of < 0.5. Thus, the ratio of > 1.0 and that of < 0.5 could indicate thrombus age of 3 days or more and that of 1 day, respectively. Collectively, our study implied that the detection of autophagy-related molecules such as LC3 and p62 would be useful for the determination of thrombus age.

Keywords

forensic pathology thrombus age determination immunohistochemistry autophagy light chain 3 p62 

Notes

Acknowledgments

We thank Ms. Mariko Kawaguchi for her excellent assistance in the preparation of this manuscript.

Funding information

This study was financially supported in part by Grants-in-Aid for Scientific Research (A) and (C) from the Ministry of Education, Culture, Sports, Science, and Technology of the Japanese Government.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

414_2019_2168_Fig4_ESM.png (2.9 mb)
Fig. S1

(PNG 3013 kb)

414_2019_2168_MOESM1_ESM.tif (117.2 mb)
High resolution image (TIF 119981 kb)
414_2019_2168_Fig5_ESM.png (2 mb)
Fig. S2

(PNG 2017 kb)

414_2019_2168_MOESM2_ESM.tif (34.9 mb)
High resolution image (TIF 35700 kb)

References

  1. 1.
    Kimura A, Ishida Y, Wada T, Hisaoka T, Morikawa Y, Sugaya T, Mukaida N, Kondo T (2010) The absence of interleukin-6 enhanced arsenite-induced renal injury by promoting autophagy of tubular epithelial cells with aberrant extracellular signal-regulated kinase activation. Am J Pathol 176:40–50.  https://doi.org/10.2353/ajpath.2010.090146 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kimura A, Ishida Y, Nosaka M, Shiraki M, Hama M, Kawaguchi T, Kuninaka Y, Shimada E, Yamamoto H, Takayasu T, Kondo T (2015) Autophagy in skin wounds: a novel marker for vital reactions. Int J Legal Med 129:537–541.  https://doi.org/10.1007/s00414-015-1168-4 CrossRefPubMedGoogle Scholar
  3. 3.
    Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884.  https://doi.org/10.1038/nature04723 CrossRefPubMedGoogle Scholar
  4. 4.
    Tang DY, Ellis RA, Lovat PE (2016) Prognostic impact of autophagy biomarkers for cutaneous melanoma. Front Oncol 6:236.  https://doi.org/10.3389/fonc.2016.00236 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kimura A, Ishida Y, Inagaki M, Nakamura Y, Sanke T, Mukaida N, Kondo T (2012) Interferon-γ is protective in cisplatin-induced renal injury by enhancing autophagic flux. Kidney Int 82:1093–1104CrossRefGoogle Scholar
  6. 6.
    Liu WJ, Ye L, Huang WF, Guo LJ, Xu ZG, Wu HL, Yang C, Liu HF (2016) p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation. Cell Mol Biol Lett 21:29.  https://doi.org/10.1186/s11658-016-0031-z CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Caccamo A, Ferreira E, Branca C, Oddo S (2017) p62 improves AD-like pathology by increasing autophagy. Mol Psychiatry 22:865–873CrossRefGoogle Scholar
  8. 8.
    Salminen A, Kaarniranta K, Haapasalo A, Hiltunen M, Soininen H, Alafuzoff I (2012) Emerging role of p62/sequestosome-1 in the pathogenesis of Alzheimer’s disease. Prog Neurobiol 96:87–95CrossRefGoogle Scholar
  9. 9.
    Odagiri S, Tanji K, Mori F, Kakita A, Takahashi H, Wakabayashi K (2012) Autophagic adapter protein NBR1 is localized in Lewy bodies and glial cytoplasmic inclusions and is involved in aggregate formation in α-synucleinopathy. Acta Neuropathol 124:173–186CrossRefGoogle Scholar
  10. 10.
    Tanji K, Maruyama A, Odagiri S, Mori F, Itoh K, Kakita A, Takahashi H, Wakabayashi K (2013) Keap1 is localized in neuronal and glial cytoplasmic inclusions in various neurodegenerative diseases. J Neuropathol Exp Neurol 72:18–28CrossRefGoogle Scholar
  11. 11.
    Konstantinides SV (2014) 2014 ESC Guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J 35:3145–3146.  https://doi.org/10.1093/eurheartj/ehu393 CrossRefPubMedGoogle Scholar
  12. 12.
    Nosaka M, Ishida Y, Kimura A, Kuninaka Y, Inui M, Mukaida N, Kondo T (2011) Absence of IFN-γ accelerates thrombus resolution through enhanced MMP-9 and VEGF expression in mice. J Clin Invest 121:2911–2920.  https://doi.org/10.1172/JCI40782 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Nosaka M, Ishida Y, Kimura A, Kondo T (2013) Immunohistochemical detection of intrathrombotic macrophage-derived cytokines and its application to thrombus age estimation in murine deep vein thrombosis model. Int J Legal Med 127:937–942.  https://doi.org/10.1007/s00414-013-0873-0 CrossRefPubMedGoogle Scholar
  14. 14.
    Nosaka M, Ishida Y, Kimura A, Hama M, Kawaguchi T, Yamamoto H, Kuninaka Y, Shimada E, Kondo T (2015) Immunohistochemical detection of intrathrombotic IL-6 and its application to thrombus age estimation. Int J Legal Med 129:1021–1025.  https://doi.org/10.1007/s00414-015-1147-9 CrossRefPubMedGoogle Scholar
  15. 15.
    Nosaka M, Ishida Y, Kimura A, Kondo T (2009) Time-dependent appearance of intrathrombus neutrophils and macrophages in a stasis-induced deep vein thrombosis model and its application to thrombus age determination. Int J Legal Med 123:235–240.  https://doi.org/10.1007/s00414-009-0324-0 CrossRefPubMedGoogle Scholar
  16. 16.
    Nosaka M, Ishida Y, Kimura A, Kondo T (2010) Immunohistochemical detection of MMP-2 and MMP-9 in a stasis-induced deep vein thrombosis model and its application to thrombus age estimation. Int J Legal Med 124:439–444.  https://doi.org/10.1007/s00414-010-0484-y CrossRefPubMedGoogle Scholar
  17. 17.
    Nosaka M, Ishida Y, Kimura A, Kondo T (2010) Time-dependent organic changes of intravenous thrombi in stasis-induced deep vein thrombosis model and its application to thrombus age determination. Forensic Sci Int 195:143–147.  https://doi.org/10.1016/j.forsciint.2009.12.008 CrossRefPubMedGoogle Scholar
  18. 18.
    Nosaka M, Ishida Y, Kuninaka Y, Kimura A, Kondo T (2012) Immunohistochemical detection of uPA, tPA, and PAI-1 in a stasis-induced deep vein thrombosis model and its application to thrombus age estimation. Int J Legal Med 126:421–425.  https://doi.org/10.1007/s00414-012-0680-z CrossRefPubMedGoogle Scholar
  19. 19.
    Nosaka M, Ishida Y, Kimura A, Kawaguchi T, Yamamoto H, Kuninaka Y, Kondo T (2016) Immunohistochemical detection of intrathrombotic fibrocytes and its application to thrombus age estimation in murine deep vein thrombosis model. Int J Legal Med 131:179–183.  https://doi.org/10.1007/s00414-016-1465-6 CrossRefPubMedGoogle Scholar
  20. 20.
    Cecchi R, Lazzaro A, Catanese M, Mandarelli G, Ferracuti S (2012) Fatal thromboembolism following physical restraint in a patient with schizophrenia. Int J Legal Med 126:477–482.  https://doi.org/10.1007/s00414-012-0670-1 CrossRefPubMedGoogle Scholar
  21. 21.
    Brandimarti F, Alessandrini F, Pesaresi M, Catalani C, De Angelis L, Galeazzi R, Giovagnetti S, Gesuita R, Righi E, Giorgetti R, Tagliabracci A (2017) Investigation on genetic thrombophilic factors in FFPE autopsy tissue from subjects who died from pulmonary embolism. Int J Legal Med 131:447–458.  https://doi.org/10.1007/s00414-016-1508-z CrossRefPubMedGoogle Scholar
  22. 22.
    Foschi N, Ragonese M, Grassi VM, De Matteis V, De-Giorgio F (2017) The periprostatic venous plexus: an unusual source of fatal pulmonary embolism during corporoplasty. Int J Legal Med 131:713–717.  https://doi.org/10.1007/s00414-016-1519-9 CrossRefPubMedGoogle Scholar
  23. 23.
    Goldhaber SZ, Bounameaux H (2012) Pulmonary embolism and deep vein thrombosis. Lancet 379:1835–1846.  https://doi.org/10.1016/S0140-6736(11)61904-1 CrossRefPubMedGoogle Scholar
  24. 24.
    Irninger W (1963) Histologische Altersbestimmung von Thrombosen und Embolien. Virchows Arch Pathol Anat 336:220–237CrossRefGoogle Scholar
  25. 25.
    Kondo T, Ishida Y (2010) Molecular pathology of wound healing. Forensic Sci Int 203:93–98.  https://doi.org/10.1016/j.forsciint.2010.07.004 CrossRefPubMedGoogle Scholar
  26. 26.
    Kondo T, Ohshima T (1996) The dynamics of inflammatory cytokines in the healing process of mouse skin wound: a preliminary study for possible wound age determination. Int J Legal Med 108:231–236CrossRefGoogle Scholar
  27. 27.
    Kondo T (2007) Timing of skin wounds. Leg Med (Tokyo) 9:109–114.  https://doi.org/10.1016/j.legalmed.2006.11.009 CrossRefGoogle Scholar
  28. 28.
    Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T (2009) Detection of fibrocytes in human skin wounds and its application for wound age determination. Int J Legal Med 123:299–304.  https://doi.org/10.1007/s00414-009-0320-4 CrossRefPubMedGoogle Scholar
  29. 29.
    Ishida Y, Kimura A, Nosaka M, Kuninaka Y, Shimada E, Yamamoto H, Nishiyama K, Inaka S, Takayasu T, Eisenmenger W, Kondo T (2015) Detection of endothelial progenitor cells in human skin wounds and its application for wound age determination. Int J Legal Med 129:1049–1054.  https://doi.org/10.1007/s00414-015-1181-7 CrossRefPubMedGoogle Scholar
  30. 30.
    Cecchi R, Sestili C, Prosperini G, Cecchetto G, Vicini E, Viel G, Muciaccia B (2014) Markers of mechanical asphyxia: immunohistochemical study on autoptic lung tissues. Int J Legal Med 128:117–125.  https://doi.org/10.1007/s00414-013-0876-x CrossRefPubMedGoogle Scholar
  31. 31.
    Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741.  https://doi.org/10.1016/j.cell.2011.10.026 CrossRefPubMedGoogle Scholar
  32. 32.
    Komatsu M, Ichimura Y (2010) Physiological significance of selective degradation of p62 by autophagy. FEBS Lett 584:1374–1378.  https://doi.org/10.1016/j.febslet.2010.02.017 CrossRefPubMedGoogle Scholar
  33. 33.
    Nosaka M, Ishida Y, Kimura A, Kuninaka Y, Taruya A, Furuta M, Mukaida N, Kondo T (2018) Contribution of the TNF-α (tumor necrosis factor-α)-TNF-Rp55 (tumor necrosis factor receptor p55) axis in the resolution of venous thrombus. Arterioscler Thromb Vasc Biol 38:2638–2650.  https://doi.org/10.1161/ATVBAHA.118.311194 CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang X, Jin JY, Wu J, Qin X, Streilein R, Hall RP, Zhang JY (2015) RNA-Seq and ChIP-Seq reveal SQSTM1/p62 as a key mediator of JunB suppression of NF-κB-dependent inflammation. J Investig Dermatol 135:1016–1024.  https://doi.org/10.1038/jid.2014.519 CrossRefPubMedGoogle Scholar
  35. 35.
    Joosten LA, Netea MG, Dinarello CA (2013) Interleukin-1β in innate inflammation, autophagy and immunity. Semin Immunol 25:416–424.  https://doi.org/10.1016/j.smim.2013.10.018 CrossRefPubMedGoogle Scholar
  36. 36.
    Chang CP, Su YC, Lee PH, Lei HY (2013) Targeting NFκB by autophagy to polarize hepatoma-associated macrophage differentiation. Autophagy 9:619–621.  https://doi.org/10.4161/auto.23546 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Forensic MedicineWakayama Medical UniversityWakayamaJapan
  2. 2.Department of Cardiovascular MedicineWakayama Medical UniversityWakayamaJapan

Personalised recommendations