Increased inducible nitric oxide synthase (iNOS) expression in human myocardial infarction

  • Verena WilmesEmail author
  • Stefanie Scheiper
  • Winta Roehr
  • Constanze Niess
  • Stefan Kippenberger
  • Katja Steinhorst
  • Marcel A. Verhoff
  • Silke Kauferstein
Original Article


Increased inducible nitric oxide synthase (iNOS) expression has been reported in heart failure, cardiomyopathies, and arteriosclerosis. iNOS is expressed in the heart upon inflammatory stimuli and produces excessive amounts of nitric oxide (NO). The overproduction of NO is cytotoxic and involved in cardiovascular diseases. Furthermore, iNOS produces superoxide anion which proceeds with NO to the harmful oxidant peroxynitrite, causing oxidative stress in the heart. The aim of the study was to gain new insights into the role of iNOS in human myocardial infarction (MI) and its contribution to oxidative stress in the heart. Furthermore, we investigated the unaffected myocardium of the infarction hearts, to study if iNOS expression is increased, probably as an indicator for oxidative stress. Our results show a significant increase (p = 0.013) of the iNOS expression in the affected regions of MI hearts (n = 9) in comparison with healthy control hearts (n = 4). In the unaffected regions of MI hearts, an increase in the iNOS expression in some samples was found as well. Our study demonstrated the direct detection of iNOS mRNA in human myocardial tissue. The balance between beneficial and deleterious effects of iNOS may be particularly influenced by the presence or absence of concurrent oxidative stress.


Myocardial infarction (MI) Oxidative stress Inducible nitric oxide synthase (iNOS) Reactive oxygen species (ROS) 



We thank Christine Elbert for her technical assistance and the Foundation Forensisches Forum.


Foundation Forensisches Forum

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.


  1. 1.
    Lind M, Hayes A, Caprnda M, Petrovic D, Rodrigo L, Kruzliak P, Zulli A (2017) Inducible nitric oxide synthase: good or bad? Biomed Pharmacother 93:370–375CrossRefGoogle Scholar
  2. 2.
    Caimi G, Montana M, Calandrino V, Caruso M, Carollo C, Catania A, Lo Presti R (2008) Nitric oxide metabolites (nitrite and nitrate) in young patients with recent acute myocardial infarction. Clin Hemorheol Microcirc 40(2):157–163Google Scholar
  3. 3.
    Searles CD (2002) The nitric oxide pathway and oxidative stress in heart failure. Congest Heart Fail 8(3):142–155CrossRefGoogle Scholar
  4. 4.
    Melillo G (1995) A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J Exp Med 182(6):1683–1693CrossRefGoogle Scholar
  5. 5.
    Soskić SS, Dobutović BD, Sudar EM, Obradović MM, Nikolić DM, Djordjevic JD, Radak DJ, Mikhailidis DP, Isenović ER (2011) Regulation of inducible nitric oxide synthase (iNOS) and its potential role in insulin resistance, diabetes and heart failure. Open Cardiovasc Med J 5:153–163CrossRefGoogle Scholar
  6. 6.
    Brady AJ, Warren JB, Poole-Wilson PA, Williams TJ, Harding SE (1993) Nitric oxide attenuates cardiac myocyte contraction. Am J Phys 265(1 Pt 2):H176–H182Google Scholar
  7. 7.
    Li H-M, Liu L, Mei X, Chen H, Liu Z, Zhao X (2014) Overexpression of inducible nitric oxide synthase impairs the survival of bone marrow stem cells transplanted into rat infarcted myocardium. Life Sci 106(1–2):50–57CrossRefGoogle Scholar
  8. 8.
    Feng Q, Lu X, Jones DL, Shen J, Arnold JM (2001) Increased inducible nitric oxide synthase expression contributes to myocardial dysfunction and higher mortality after myocardial infarction in mice. Circulation 104(6):700–704CrossRefGoogle Scholar
  9. 9.
    Zhang P, Xu X, Hu X, van Deel ED, Zhu G, Chen Y (2007) Inducible nitric oxide synthase deficiency protects the heart from systolic overload-induced ventricular hypertrophy and congestive heart failure. Circ Res 100(7):1089–1098CrossRefGoogle Scholar
  10. 10.
    Costa S, Reina-Couto M, Albino-Teixeira A, Sousa T (2016) Statins and oxidative stress in chronic heart failure. Rev Port Cardiol (Engl Ed) 35(1):41–57CrossRefGoogle Scholar
  11. 11.
    Bailey A, Pope TW, Moore SA, Campbell CL (2007) The tragedy of TRIUMPH for nitric oxide synthesis inhibition in cardiogenic shock. Am J Cardiovasc Drugs 7(5):337–345CrossRefGoogle Scholar
  12. 12.
    Huang H, Koelle P, Fendler M, Schröttle A, Czihal M, Hoffmann U, Conrad M, Kuhlencordt PJ (2014) Induction of inducible nitric oxide synthase (iNOS) expression by oxLDL inhibits macrophage derived foam cell migration. Atherosclerosis 235(1):213–222CrossRefGoogle Scholar
  13. 13.
    Gori T, Münzel T (2011) Oxidative stress and endothelial dysfunction: therapeutic implications. Ann Med 43(4):259–272CrossRefGoogle Scholar
  14. 14.
    Jones DP (2008) Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 295(4):C849–C868CrossRefGoogle Scholar
  15. 15.
    Münzel T, Gori T, Bruno RM, Taddei S (2010) Is oxidative stress a therapeutic target in cardiovascular disease? Eur Heart J 31(22):2741–2748CrossRefGoogle Scholar
  16. 16.
    Gosslau A, Rensing L (2002) Oxidativer Stress, altersabhängige Zellschädigungen und antioxidative Mechanismen. Z Gerontol Geriatr 35(2):139–150CrossRefGoogle Scholar
  17. 17.
    Ho E, Karimi Galougahi K, Liu C-C, Bhindi R, Figtree GA (2013) Biological markers of oxidative stress: applications to cardiovascular research and practice. Redox Biol 1:483–491CrossRefGoogle Scholar
  18. 18.
    Paslawska U, Kiczak L, Bania J, Paslawski R, Janiszewski A, Dzięgiel P, Zacharski M, Tomaszek A, Michlik K (2016) Inducible NO synthase is constitutively expressed in porcine myocardium and its level decreases along with tachycardia-induced heart failure. Cardiovasc Pathol 25(1):3–11CrossRefGoogle Scholar
  19. 19.
    Kunsch C, Medford RM (1999) Oxidative stress as a regulator of gene expression in the vasculature. Circ Res 85(8):753–766CrossRefGoogle Scholar
  20. 20.
    Ghosh S, Karin M (2002) Missing pieces in the NF-kappaB puzzle. Cell 109(109 Suppl):S81–S96CrossRefGoogle Scholar
  21. 21.
    Giordano FJ (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115(3):500–508CrossRefGoogle Scholar
  22. 22.
    Prabhu SD (2004) Nitric oxide protects against pathological ventricular remodeling: reconsideration of the role of NO in the failing heart. Circ Res 94(9):1155–1157CrossRefGoogle Scholar
  23. 23.
    Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87(1):315–424CrossRefGoogle Scholar
  24. 24.
    Koppelkamm A, Vennemann B, Fracasso T, Lutz-Bonengel S, Schmidt U, Heinrich M (2010) Validation of adequate endogenous reference genes for the normalisation of qPCR gene expression data in human post mortem tissue. Int J Legal Med 124(5):371–380CrossRefGoogle Scholar
  25. 25.
    Pilbrow AP, Ellmers LJ, Black MA, Moravec CS, Sweet WE, Troughton RW, Richards AM, Frampton CM, Cameron VA (2008) Genomic selection of reference genes for real-time PCR in human myocardium. BMC Med Genet 1:64Google Scholar
  26. 26.
    Hellemans J, Mortier G, de PA, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8(2):R19CrossRefGoogle Scholar
  27. 27.
    Koppelkamm A, Vennemann B, Lutz-Bonengel S, Fracasso T, Vennemann M (2011) RNA integrity in post-mortem samples: influencing parameters and implications on RT-qPCR assays. Int J Legal Med 125(4):573–580CrossRefGoogle Scholar
  28. 28.
    Pierini D, Bryan NS (2015) Nitric oxide availability as a marker of oxidative stress. Methods Mol Biol 1208:63–71CrossRefGoogle Scholar
  29. 29.
    Tokmak A, Yıldırım G, Sarıkaya E, Çınar M, Boğdaycıoğlu N, Yılmaz FM, Yılmaz N (2015) Increased oxidative stress markers may be a promising indicator of risk for primary ovarian insufficiency: a cross-sectional case control study. Rev Bras Ginecol Obstet 37(9):411–416Google Scholar
  30. 30.
    Menchén LA, Colón AL, Moro MA, Leza JC, Lizasoain I, Menchén P, Alvarez E, Lorenzo P (2001) N-(3-(aminomethyl)benzyl)acetamidine, an inducible nitric oxide synthase inhibitor, decreases colonic inflammation induced by trinitrobenzene sulphonic acid in rats. Life Sci 69(4):479–491CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Verena Wilmes
    • 1
    Email author
  • Stefanie Scheiper
    • 1
  • Winta Roehr
    • 1
  • Constanze Niess
    • 1
  • Stefan Kippenberger
    • 2
  • Katja Steinhorst
    • 2
  • Marcel A. Verhoff
    • 1
  • Silke Kauferstein
    • 1
  1. 1.Institute of Legal Medicine, University Hospital of FrankfurtGoethe University Frankfurt/MainFrankfurt am MainGermany
  2. 2.Department of Dermatology, University Hospital of FrankfurtGoethe University Frankfurt/MainFrankfurtGermany

Personalised recommendations