Advertisement

Evaluating the effects of causes of death on postmortem interval estimation by ATR-FTIR spectroscopy

  • Kai Zhang
  • Qi Wang
  • Ruina Liu
  • Xin Wei
  • Zhouru Li
  • Shuanliang FanEmail author
  • Zhenyuan WangEmail author
Original Article

Abstract

Estimating postmortem interval (PMI) is one of the most challenging tasks in forensic practice due to the effects of many factors. Here, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy combined with chemometrics was utilized to evaluate the effects of causes of death when estimating PMI and to establish a partial least square (PLS) regression model, which can precisely predict PMI under different causes of death. First, the sensitivities to causes of death (brainstem injury, mechanical asphyxia, and hemorrhage shock) of seven kinds of organs were evaluated based on their degrees of cohesion and separation. Then, the liver was selected as the most sensitive organ to establish a PMI estimation model to compare the predicted deviations from different causes of death. It turns out that the cause of death has no significant effect on estimating PMI. Next, a PLS regression model was built with kidney tissues, which have the lowest sensitivity, and this model showed a satisfactory predictive ability and wide applicability. This study demonstrates the feasibility of using ATR-FTIR spectroscopy in conjunction with chemometrics as a powerful alternative for detecting changes in biochemistry and estimating PMI. A new perspective was also provided for evaluating the effect of causes of death when predicting PMI.

Keywords

Postmortem interval Cause of death FTIR spectroscopy Chemometrics Partial least-squares 

Notes

Funding information

This study was funded by the Council of National Natural Science Foundation of China (No. 81730056) and the project of Independent Innovative Experiment for Postgraduates in medicine in Xi’an Jiaotong University (Grant No. YJSCX-2018).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

414_2019_2042_MOESM1_ESM.docx (469 kb)
ESM 1 (DOCX 468 kb)

References

  1. 1.
    Feng H, Zhang X, Zhang C (2015) mRIN for direct assessment of genome-wide and gene-specific mRNA integrity from large-scale RNA-sequencing data. Nat Commun 6:7816Google Scholar
  2. 2.
    Ferreira PG, Muñoz-Aguirre M, Reverter F, Godinho CPS, Sousa A, Amadoz A, Sodaei R, Hidalgo MR, Pervouchine D, Carbonell-Caballero J (2018) The effects of death and post-mortem cold ischemia on human tissue transcriptomes. Nat Commun 9(1):490Google Scholar
  3. 3.
    Young ST, Wells JD, Hobbs GR, Bishop CP (2013) Estimating postmortem interval using RNA degradation and morphological changes in tooth pulp. Forensic Sci Int 229(1–3):163. e161–163. e166Google Scholar
  4. 4.
    Zapico SC, Menéndez ST, Núñez P (2014) Cell death proteins as markers of early postmortem interval. Cell Mol Life Sci 71(15):2957–2962Google Scholar
  5. 5.
    Li C, Wang Q, Zhang Y, Lin H, Zhang J, Huang P, Wang Z (2016) Research progress in the estimation of the postmortem interval by Chinese forensic scholars. Forensic Sci Res 1(1):3–13Google Scholar
  6. 6.
    Wang Q, Zhang Y, Lin H, Zha S, Fang R, Wei X, Fan S, Wang Z (2017) Estimation of the late postmortem interval using FTIR spectroscopy and chemometrics in human skeletal remains. Forensic Sci Int 281:113–120.  https://doi.org/10.1016/j.forsciint.2017.10.033 Google Scholar
  7. 7.
    Lin H, Zhang Y, Wang Q, Li B, Huang P, Wang Z (2017) Estimation of the age of human bloodstains under the simulated indoor and outdoor crime scene conditions by ATR-FTIR spectroscopy. Sci Rep 7(1):13254Google Scholar
  8. 8.
    Wells JD, Lecheta MC, Moura MO, LaMotte LR (2015) An evaluation of sampling methods used to produce insect growth models for postmortem interval estimation. Int J Legal Med 129(2):405–410Google Scholar
  9. 9.
    Poloz YO, O’Day DH (2009) Determining time of death: temperature-dependent postmortem changes in calcineurin a, MARCKS, CaMKII, and protein phosphatase 2A in mouse. Int J Legal Med 123(4):305–314Google Scholar
  10. 10.
    Madea B (2005) Is there recent progress in the estimation of the postmortem interval by means of thanatochemistry? Forensic Sci Int 151(2–3):139–149Google Scholar
  11. 11.
    Palmiere C, Mangin P (2015) Urea nitrogen, creatinine, and uric acid levels in postmortem serum, vitreous humor, and pericardial fluid. Int J Legal Med 129(2):301–305Google Scholar
  12. 12.
    Arroyo A, Valero J, Marrón T, Vidal C, Hontecillas B, Bernal J (1998) Pericardial fluid postmortem: comparative study of natural and violent deaths. Am J Forensic Med Pathol 19(3):266–268Google Scholar
  13. 13.
    Ishikawa T, Inamori-Kawamoto O, Quan L, Michiue T, Chen J-H, Wang Q, Zhu B-l, Maeda H (2014) Postmortem urinary catecholamine levels with regard to the cause of death. Legal Med 16(6):344–349Google Scholar
  14. 14.
    Li D-R, Zhu B-L, Ishikawa T, Zhao D, Michiue T, Maeda H (2006) Postmortem serum protein S100B levels with regard to the cause of death involving brain damage in medicolegal autopsy cases. Legal Med 8(2):71–77Google Scholar
  15. 15.
    Zhu B-L, Ishida K, Quan L, Taniguchi M, Oritani S, Li D-R, Fujita MQ, Maeda H (2002) Postmortem serum uric acid and creatinine levels in relation to the causes of death. Forensic Sci Int 125(1):59–66Google Scholar
  16. 16.
    Zhu B-L, Ishikawa T, Michiue T, Li D-R, Zhao D, Oritani S, Kamikodai Y, Tsuda K, Okazaki S, Maeda H (2006) Postmortem cardiac troponin T levels in the blood and pericardial fluid. Part 1. Analysis with special regard to traumatic causes of death. Legal Med 8(2):86–93Google Scholar
  17. 17.
    Zhu B-L, Ishikawa T, Michiue T, Li D-R, Zhao D, Quan L, Maeda H (2005) Evaluation of postmortem urea nitrogen, creatinine and uric acid levels in pericardial fluid in forensic autopsy. Legal Med 7(5):287–292Google Scholar
  18. 18.
    Zhu B-L, Ishikawa T, Quan L, Li D-R, Zhao D, Michiue T, Maeda H (2005) Evaluation of postmortem serum calcium and magnesium levels in relation to the causes of death in forensic autopsy. Forensic Sci Int 155(1):18–23Google Scholar
  19. 19.
    Wang Z, Tuo Y, Li B, Deng K, Han S, Luo Y, Sun Q, Li Z, Chen Y, Wang Z (2017) Preliminary study on fatal hyperthermia in rat liver tissue by Fourier transform infrared microspectroscopy. Aust J Forensic Sci 49(4):468–478Google Scholar
  20. 20.
    Jacques SL (2013) Optical properties of biological tissues: a review. Phys Med Biol 58(11):R37–R61Google Scholar
  21. 21.
    Kendall C, Isabelle M, Bazant-Hegemark F, Hutchings J, Orr L, Babrah J, Baker R, Stone N (2009) Vibrational spectroscopy: a clinical tool for cancer diagnostics. Analyst 134(6):1029–1045Google Scholar
  22. 22.
    Muro CK, Doty KC, Bueno J, Halámková L, Lednev IK (2014) Vibrational spectroscopy: recent developments to revolutionize forensic science. Anal Chem 87(1):306–327Google Scholar
  23. 23.
    Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM, Fielden PR, Fogarty SW, Fullwood NJ, Heys KA (2014) Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc 9(8):1771–1791Google Scholar
  24. 24.
    Movasaghi Z, Rehman S, ur Rehman DI (2008) Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev 43(2):134–179Google Scholar
  25. 25.
    Huang P, Ke Y, Lu Q, Xin B, Fan S, Yang G, Wang Z (2008) Analysis of postmortem metabolic changes in rat kidney cortex using Fourier transform infrared spectroscopy. Spectroscopy 22(1):21–31Google Scholar
  26. 26.
    Ke Y, Li Y, Wang ZY (2012) The changes of Fourier transform infrared spectrum in rat brain. J Forensic Sci 57(3):794–798Google Scholar
  27. 27.
    Wang Q, He H, Li B, Lin H, Zhang Y, Zhang J, Wang Z (2017) UV-vis and ATR-FTIR spectroscopic investigations of postmortem interval based on the changes in rabbit plasma. PLoS One 12(7):e0182161.  https://doi.org/10.1371/journal.pone.0182161 Google Scholar
  28. 28.
    Zhang J, Li B, Wang Q, Li C, Zhang Y, Lin H, Wang Z (2017) Characterization of postmortem biochemical changes in rabbit plasma using ATR-FTIR combined with chemometrics: a preliminary study. Spectrochim Acta A Mol Biomol Spectrosc 173:733–739Google Scholar
  29. 29.
    Hanifi A, McCarthy H, Roberts S, Pleshko N (2013) Fourier transform infrared imaging and infrared fiber optic probe spectroscopy identify collagen type in connective tissues. PLoS One 8(5):e64822Google Scholar
  30. 30.
    Kelly JG, Trevisan J, Scott AD, Carmichael PL, Pollock HM, Martin-Hirsch PL, Martin FL (2011) Biospectroscopy to metabolically profile biomolecular structure: a multistage approach linking computational analysis with biomarkers. J Proteome Res 10(4):1437–1448Google Scholar
  31. 31.
    Lebon M, Reiche I, Gallet X, Bellot-Gurlet L, Zazzo A (2016) Rapid quantification of bone collagen content by ATR-FTIR spectroscopy. Radiocarbon 58(1):131–145Google Scholar
  32. 32.
    McLaughlin G, Lednev IK (2012) Spectroscopic discrimination of bone samples from various species. Am J Anal Chem 3(02):161–167Google Scholar
  33. 33.
    Barnes R, Dhanoa MS, Lister SJ (1989) Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl Spectrosc 43(5):772–777Google Scholar
  34. 34.
    Zimmermann B, Kohler A (2013) Optimizing Savitzky–Golay parameters for improving spectral resolution and quantification in infrared spectroscopy. Appl Spectrosc 67(8):892–902Google Scholar
  35. 35.
    Martin FL, Kelly JG, Llabjani V, Martin-Hirsch PL, Patel II, Trevisan J, Fullwood NJ, Walsh MJ (2010) Distinguishing cell types or populations based on the computational analysis of their infrared spectra. Nat Protoc 5(11):1748–1760Google Scholar
  36. 36.
    Aranganayagi S, Thangavel K Clustering categorical data using silhouette coefficient as a relocating measure. In: Conference on computational intelligence and multimedia applications, 2007. International conference on, 2007. IEEE, pp 13–17Google Scholar
  37. 37.
    Dey D, Solorio T, y Gomez MM, Escalante HJ Instance selection in text classification using the silhouette coefficient measure. In: Mexican international conference on artificial intelligence, 2011. Springer, pp 357–369Google Scholar
  38. 38.
    Meade AD, Lyng FM, Knief P, Byrne HJ (2007) Growth substrate induced functional changes elucidated by FTIR and Raman spectroscopy in in–vitro cultured human keratinocytes. Anal Bioanal Chem 387(5):1717–1728Google Scholar
  39. 39.
    Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58(2):109–130.  https://doi.org/10.1016/S0169-7439(01)00155-1 Google Scholar
  40. 40.
    Brás LP, Lopes M, Ferreira AP, Menezes JC (2008) A bootstrap-based strategy for spectral interval selection in PLS regression. J Chemom 22(11–12):695–700Google Scholar
  41. 41.
    Faber N, Rajko R (2007) How to avoid over-fitting in multivariate calibration—the conventional validation approach and an alternative. Anal Chim Acta 595(1–2):98–106Google Scholar
  42. 42.
    Alves A, Santos A, Rozenberg P, Pâques LE, Charpentier J-P, Schwanninger M, Rodrigues J (2012) A common near infrared—based partial least squares regression model for the prediction of wood density of Pinus pinaster and Larix× eurolepis. Wood Sci Technol 46(1–3):157–175Google Scholar
  43. 43.
    Coûteaux M-M, Sarmiento L, Hervé D, Acevedo D (2005) Determination of water-soluble and total extractable polyphenolics in biomass, necromass and decomposing plant material using near-infrared reflectance spectroscopy (NIRS). Soil Biol Biochem 37(4):795–799Google Scholar
  44. 44.
    Næs T, Isaksson T, Fearn T, Davies T (2002) A user friendly guide to multivariate calibration and classification. NIR publications, ChichesterGoogle Scholar
  45. 45.
    Andersen CM, Bro R (2010) Variable selection in regression—a tutorial. J Chemom 24(11–12):728–737Google Scholar
  46. 46.
    Staniszewska E, Malek K, Baranska M (2014) Rapid approach to analyze biochemical variation in rat organs by ATR FTIR spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 118:981–986.  https://doi.org/10.1016/j.saa.2013.09.131 Google Scholar
  47. 47.
    Kumar S, Ali W, Bhattacharya S, Singh US, Kumar A, Verma AK (2015) The effect of elapsed time on cardiac troponin-T (cTnT) degradation and its relation to postmortem interval in cases of electrocution. J Forensic Legal Med 34:45–49Google Scholar
  48. 48.
    McLaughlin G, Lednev IK (2011) Potential application of Raman spectroscopy for determining burial duration of skeletal remains. Anal Bioanal Chem 401(8):2511–2518Google Scholar
  49. 49.
    Pittner S, Monticelli FC, Pfisterer A, Zissler A, Sänger AM, Stoiber W, Steinbacher P (2016) Postmortem degradation of skeletal muscle proteins: a novel approach to determine the time since death. Int J Legal Med 130(2):421–431Google Scholar
  50. 50.
    Gümüş A, Gümüş B, Özer E, Yücetaş E, Yücetaş U, Düz E, Sarı S, Koldaş M (2016) Evaluation of the postmortem glucose and glycogen levels in hepatic, renal, muscle, and brain tissues: is it possible to estimate postmortem interval using these parameters? J Forensic Sci 61(S1):S144–S149Google Scholar
  51. 51.
    Henssge C, Madea B (2007) Estimation of the time since death. Forensic Sci Int 165(2–3):182–184.  https://doi.org/10.1016/j.forsciint.2006.05.017 Google Scholar
  52. 52.
    Hyde ER, Haarmann DP, Petrosino JF, Lynne AM, Bucheli SR (2015) Initial insights into bacterial succession during human decomposition. Int J Legal Med 129(3):661–671Google Scholar
  53. 53.
    Olsztynska-Janus S, Szymborska-Malek K, Gasior-Glogowska M, Walski T, Komorowska M, Witkiewicz W, Pezowicz C, Kobielarz M, Szotek S (2012) Spectroscopic techniques in the study of human tissues and their components. Part I: IR spectroscopy. Acta Bioeng Biomech 14(3):101–115.  https://doi.org/10.5277/abb120314 Google Scholar
  54. 54.
    Petibois C, Deleris G (2005) Evidence that erythrocytes are highly susceptible to exercise oxidative stress: FT-IR spectrometric studies at the molecular level. Cell Biol Int 29(8):709–716.  https://doi.org/10.1016/j.cellbi.2005.04.007 Google Scholar
  55. 55.
    Petibois C, Gionnet K, Goncalves M, Perromat A, Moenner M, Deleris G (2006) Analytical performances of FT-IR spectrometry and imaging for concentration measurements within biological fluids, cells, and tissues. Analyst 131(5):640–647.  https://doi.org/10.1039/b518076g Google Scholar
  56. 56.
    Petibois C, Melin AM, Perromat A, Cazorla G, Deleris G (2000) Glucose and lactate concentration determination on single microsamples by Fourier-transform infrared spectroscopy. J Lab Clin Med 135(2):210–215.  https://doi.org/10.1067/mlc.2000.104460 Google Scholar
  57. 57.
    Badaeva E, Albert VV, Kilina S, Koposov A, Sykora M, Tretiak S (2010) Effect of deprotonation on absorption and emission spectra of Ru (II)-bpy complexes functionalized with carboxyl groups. Phys Chem Chem Phys 12(31):8902–8913.  https://doi.org/10.1039/b924910a Google Scholar
  58. 58.
    Cunha VRR, Constantino VRL, Ando RA (2012) Raman spectroscopy and DFT calculations of Para-coumaric acid and its deprotonated species. Vib Spectrosc 58:139–145.  https://doi.org/10.1016/j.vibspec.2011.12.007 Google Scholar
  59. 59.
    Hyde ER, Haarmann DP, Lynne AM, Bucheli SR, Petrosino JF (2013) The living dead: bacterial community structure of a cadaver at the onset and end of the bloat stage of decomposition. PLoS One 8(10):e77733.  https://doi.org/10.1371/journal.pone.0077733 Google Scholar
  60. 60.
    Metcalf JL, Wegener Parfrey L, Gonzalez A, Lauber CL, Knights D, Ackermann G, Humphrey GC, Gebert MJ, Van Treuren W, Berg-Lyons D, Keepers K, Guo Y, Bullard J, Fierer N, Carter DO, Knight R (2013) A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. Elife 2:e01104.  https://doi.org/10.7554/elife.01104 Google Scholar
  61. 61.
    Metcalf JL, Xu ZZ, Weiss S, Lax S, Van Treuren W, Hyde ER, Song SJ, Amir A, Larsen P, Sangwan N, Haarmann D, Humphrey GC, Ackermann G, Thompson LR, Lauber C, Bibat A, Nicholas C, Gebert MJ, Petrosino JF, Reed SC, Gilbert JA, Lynne AM, Bucheli SR, Carter DO, Knight R (2016) Microbial community assembly and metabolic function during mammalian corpse decomposition. Science 351(6269):158–162.  https://doi.org/10.1126/science.aad2646 Google Scholar
  62. 62.
    Weghoff MC, Bertsch J, Müller V (2015) A novel mode of lactate metabolism in strictly anaerobic bacteria. Environ Microbiol 17(3):670–677.  https://doi.org/10.1111/1462-2920.12493 Google Scholar
  63. 63.
    Scheifinger C, Latham M, Wolin M (1975) Relationship of lactate dehydrogenase specificity and growth rate to lactate metabolism by Selenomonas ruminantium. Appl Microbiol 30(6):916–921Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Forensic Pathology, College of Forensic MedicineXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  2. 2.Department of Forensic MedicineChongqing Medical UniversityChongqingPeople’s Republic of China
  3. 3.Department of Forensic MedicineXuzhou Medical UniversityXuzhouPeople’s Republic of China

Personalised recommendations