Advertisement

Description of immature stages of Thanatophilus sinuatus (Coleoptera: Silphidae)

  • Pavel JakubecEmail author
  • Martin Novák
  • Jarin Qubaiová
  • Hana Šuláková
  • Jan Růžička
Original Article

Abstract

Necrophagous beetles of genus Thanatophilus are well recognized as a group of beetles with a high potential utility in forensic entomology. They can be used to estimate postmortem interval (PMI) or validate the value for other groups of insects commonly encountered on human remains, like blowflies (Calliphoridae). However, reliable tools for instar and species identification of their larvae are needed as such information is crucial for allowing accurate PMI estimate. One of the most common species of the genus Thanatophilus in Europe is Thanatophilus sinuatus. This species occurs frequently on human remains and its larvae feed on decaying tissues throughout their development. Therefore, the larvae could become useful bioindicators for forensic entomology, although their current description does not allow reliable instar or species identification. Our goal was to provide morphological characters for species and instar identification of all larval stages of T. sinuatus. The larvae were obtained from laboratory rearing under controlled conditions (20 °C and 16:8 h of light/dark period). Qualitative and quantitative morphological instar and species-specific characters are described and illustrated. Additionally, we report observations of biological and developmental lengths for all stages of the species. We also compared these morphological characters with recent description of T. rugosus and provided an identification key of these two similar and often co-occurring species. We noticed that some characters for instar identification were shared between T. sinuatus and T. rugosus and were confirmed by comparison with larvae of T. dentigerus that they can be applied to other species of the genus.

Keywords

Thanatophilus sinuatus Larval instar identification Morphology Forensic entomology 

Notes

Acknowledgments

Thanks are due to Miroslav Hyliš (Praha, Czech Republic) for preparing our electron imaging samples and providing needed guidance at the SEM laboratory.

Funding

The project was supported by the Ministry of the Interior of the Czech Republic (grant no. VI20152018027) and Internal Grant Agency of the Faculty of Environmental Sciences, CULS Prague (4211013123141).

Compliance with ethical standards

Conflict of interest

H. Šuláková is an employee of Faculty of Environmental Sciences and Police of the Czech Republic.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

414_2019_2040_MOESM1_ESM.xls (14 kb)
Online Resource 1 (XLS 14 kb)

References

  1. 1.
    Ridgeway JA, Midgley JM, Collett IJ, Villet MH (2014) Advantages of using development models of the carrion beetles Thanatophilus micans (Fabricius) and T. mutilatus (Castelneau) (Coleoptera: Silphidae) for estimating minimum post mortem intervals, verified with case data. Int J Legal Med 128:207–220.  https://doi.org/10.1007/s00414-013-0865-0 CrossRefGoogle Scholar
  2. 2.
    Charabidze D, Vincent B, Pasquerault T, Hedouin V (2016) The biology and ecology of Necrodes littoralis, a species of forensic interest in Europe. Int J Legal Med 130:273–280.  https://doi.org/10.1007/s00414-015-1253-8 CrossRefGoogle Scholar
  3. 3.
    Midgley JM, Richards CS, Villet MH (2010) The utility of Coleoptera in forensic investigations. In: Amendt J, Goff ML, Campobasso CP, Grassberger M (eds) Current concepts in forensic entomology. Springer Netherlands, Dordrecht, pp 57–68Google Scholar
  4. 4.
    Růžička J (2015) Silphidae. In: Löbl I, Löbl D (eds) Catalogue of Palaearctic Coleoptera volume 2/1. Hydrophiloidea – Staphylinoidea, revised and updated edition. Brill, Leiden, pp 291–304Google Scholar
  5. 5.
    Anderson RS, Peck SB (1985) The insects and arachnids of Canada, part 13: the carrion beetles of Canada and Alaska (Coleoptera: Silphidae and Agyrtidae). Agriculture Canada, OttawaGoogle Scholar
  6. 6.
    Navarette-Heredia JL (2009) Silphidae (Coleoptera) de México: diversidad y distribución. Universidad de Guadalajara, GuadalajaraGoogle Scholar
  7. 7.
    Midgley JM, Villet MH (2009) Development of Thanatophilus micans (Fabricius 1794) (Coleoptera: Silphidae) at constant temperatures. Int J Legal Med 123:285–292.  https://doi.org/10.1007/s00414-008-0280-0 CrossRefGoogle Scholar
  8. 8.
    Schawaller W (1981) Taxonomie und Faunistik der Gattung Thanatophilus (Coleoptera: Silphidae). Stuttg Beitr Naturkd A 351:1–21Google Scholar
  9. 9.
    Šustek Z (1981) Keys to identification of insects 2: carrion beetles of Czechoslovakia (Coleoptera: Silphidae). Zprávy Čsl Spol Ent Při ČSAV 2:1–47Google Scholar
  10. 10.
    Ratcliffe BC (1996) The carrion beetles (Coleoptera: Silphidae) of Nebraska. Bull Univ Nebr State Mus 13:1–100.  https://doi.org/10.1093/aesa/90.3.399 Google Scholar
  11. 11.
    Nikolaev GV, Kozminykh VO (2002) The carrion beetles (Coleoptera: Agyrtidae, Silphidae) of Kazakhstan, Russia and adjacent countries. Kazak Universiteti, AlmatyGoogle Scholar
  12. 12.
    Novák M, Jakubec P, Qubaiová J, Šuláková H, Růžička J (2018) Revisited larval morphology of Thanatophilus rugosus (Coleoptera: Silphidae). Int J Legal Med 132:939–954.  https://doi.org/10.1007/s00414-017-1764-6 CrossRefGoogle Scholar
  13. 13.
    Daniel CA, Midgley JM, Villet MH (2017) Determination of species and instars of the larvae of the afrotropical species of Thanatophilus Leach, 1817 (Coleoptera, Silphidae). Afr Invertebr 58:1–10.  https://doi.org/10.3897/AfrInvertebr.58.12966 CrossRefGoogle Scholar
  14. 14.
    Frątczak K, Matuszewski S (2016) Classification of forensically-relevant larvae according to instar in a closely related species of carrion beetles (Coleoptera: Silphidae: Silphinae). Forensic Sci Med Pathol 12:193–197.  https://doi.org/10.1007/s12024-016-9774-0 CrossRefGoogle Scholar
  15. 15.
    Woodcock TS, Boyle EE, Roughley RE, Kevan PG, Labbee RN, Smith ABT, Goulet H, Steinke D, Adamowicz SJ (2013) The diversity and biogeography of the Coleoptera of Churchill: insights from DNA barcoding. BMC Ecol 13:40.  https://doi.org/10.1186/1472-6785-13-40 CrossRefGoogle Scholar
  16. 16.
    Pentinsaari M, Hebert PDN, Mutanen M (2014) Barcoding beetles: a regional survey of 1872 species reveals high identification success and unusually deep interspecific divergences. PLoS One 9:e108651.  https://doi.org/10.1371/journal.pone.0108651 CrossRefGoogle Scholar
  17. 17.
    Sikes DS, Bowser M, Morton JM, Bickford C, Meierotto S, Hildebrandt K (2017) Building a DNA barcode library of Alaska’s non-marine arthropods. Genome 60:248–259.  https://doi.org/10.1139/gen-2015-0203 CrossRefGoogle Scholar
  18. 18.
    Jakubec P, Růžička J (2012) Distribution of open landscape carrion beetles (Coleoptera: Silphidae) in selected lowlands of the Czech Republic. Klapalekiana 48:169–189Google Scholar
  19. 19.
    Bonacci T, Greco S, Brandmayr TZ (2011) Insect fauna and degradation activity of Thanatophilus species on carrion in southern Italy (Coleoptera: Silphidae). Entomol Gen 33:63–70.  https://doi.org/10.1127/entom.gen/33/2011/63 CrossRefGoogle Scholar
  20. 20.
    Jakubec P, Růžička J (2015) Is the type of soil an important factor determining the local abundance of carrion beetles (Coleoptera: Silphidae)? Eur J Entomol 112.  https://doi.org/10.14411/eje.2015.071
  21. 21.
    Frątczak-Łagiewska K, Matuszewski S (2018) Resource partitioning between closely related carrion beetles: Thanatophilus sinuatus (F.) and Thanatophilus rugosus (L.) (Coleoptera: Silphidae). Entomol Gen 37:143–156.  https://doi.org/10.1127/entomologia/2017/0352 CrossRefGoogle Scholar
  22. 22.
    von Lengerken H (1929) Studien über die Lebenserscheinungen der Silphini (Col.). XI-XIII. Thanatophilus sinuatus F., rugosus L. und dispar Hrbst. Z Morphol Ökol Tiere 14:654–666Google Scholar
  23. 23.
    Novák M (2017) Redescription of immature stages of central European fireflies, part 1: Lampyris noctiluca (Linnaeus, 1758) larva, pupa and notes on its biology (Coleoptera: Lampyridae: Lampyrinae). Zootaxa 4247:429–444CrossRefGoogle Scholar
  24. 24.
    Lawrence JF, Ślipiński SA (2013) Australian beetles. Volume 1: morphology, classification and keys. CSIRO Publishing, CollingwoodCrossRefGoogle Scholar
  25. 25.
    von Lengerken H (1938) Beziehungen zwischen der Ernährungsweise und der Gestaltung der Mandibeln bei den Larven der Silphini (Coleopt.). Zool Anz 122:171–175Google Scholar
  26. 26.
    Paulian R (1941) Les premiers états des Staphylinoidea. Étude de morphologie comparée. Mémoires du Muséum Natl d’Histoire Nat. Nouv Ser 15:1–361Google Scholar
  27. 27.
    Xambeu PJV (1892) Moeurs et métamorphoses d’insectes (Suite). Annls Soc Linn Lyon 39:137–194Google Scholar
  28. 28.
    Coombs CW (1981) The development, fecundity and longevity of Dermestes ater Degeer (Coleoptera: Dermestidae). J Stored Prod Res 17:31–36.  https://doi.org/10.1016/0022-474X(81)90029-1 CrossRefGoogle Scholar
  29. 29.
    Coombs CW (1979) The effect of temperature and humidity upon the development and fecundity of Dermestes haemorrhoidalis Küster and Dermestes peruvianus Laporte de Castelnau (Coleoptera: Dermestidae). J Stored Prod Res 15:43–52.  https://doi.org/10.1016/0022-474X(79)90011-0 CrossRefGoogle Scholar
  30. 30.
    Dekeirsschieter J, Verheggen FJ, Haubruge E, Brostaux Y (2011) Carrion beetles visiting pig carcasses during early spring in urban, forest and agricultural biotopes of Western Europe. J Insect Sci 11:73CrossRefGoogle Scholar
  31. 31.
    Matuszewski S, Bajerlein D, Konwerski S, Szpila K (2011) Insect succession and carrion decomposition in selected forests of Central Europe. Part 3: succession of carrion fauna. Forensic Sci Int 207:150–163.  https://doi.org/10.1016/j.forsciint.2010.09.022 CrossRefGoogle Scholar
  32. 32.
    Matuszewski S, Bajerlein D, Konwerski S, Szpila K (2010) Insect succession and carrion decomposition in selected forests of Central Europe. Part 2: composition and residency patterns of carrion fauna. Forensic Sci Int 195:42–51.  https://doi.org/10.1016/j.forsciint.2009.11.007 CrossRefGoogle Scholar
  33. 33.
    Midgley JM, Villet MH (2009) Effect of the killing method on post-mortem change in length of larvae of Thanatophilus micans (Fabricius 1794) (Coleoptera: Silphidae) stored in 70% ethanol. Int J Legal Med 123:103–108.  https://doi.org/10.1007/s00414-008-0260-4 CrossRefGoogle Scholar
  34. 34.
    Jakubec P, Růžička J (2017) Spatial distribution modeling of Thanatophilus sinuatus (Coleoptera: Silphidae) in the Czech Republic. In: 17th International Multidisciplinary Scientific GeoConference SGEM 2017. International Multidisciplinary Scientific Geoconference, Sofia, pp 875–882Google Scholar
  35. 35.
    Matuszewski S, Szafałowicz M (2013) Temperature-dependent appearance of forensically useful beetles on carcasses. Forensic Sci Int 229:92–99.  https://doi.org/10.1016/j.forsciint.2013.03.034 CrossRefGoogle Scholar
  36. 36.
    Sikes D (2008) Carrion beetles (Coleoptera: Silphidae). In: Capinera JL (ed) Encyclopedia of entomology. Volume 1: A - C, 2nd edn. Springer, Berlin, pp 749–758Google Scholar
  37. 37.
    Matuszewski S, Frątczak K, Konwerski S, Bajerlein D, Szpila K, Jarmusz M, Szafałowicz M, Grzywacz A, Mądra A (2016) Effect of body mass and clothing on carrion entomofauna. Int J Legal Med 130:221–232.  https://doi.org/10.1007/s00414-015-1145-y CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Environmental SciencesCzech University of Life Sciences PraguePraha – SuchdolCzech Republic
  2. 2.Police of the Czech RepublicInstitute of Criminalistics PraguePrahaCzech Republic

Personalised recommendations