International Journal of Legal Medicine

, Volume 133, Issue 3, pp 863–869 | Cite as

Evidence for an association of interferon gene variants with sudden infant death syndrome

  • Angelina Hafke
  • Peter Schürmann
  • Thomas Rothämel
  • Thilo Dörk
  • Michael KlintscharEmail author
Original Article



There is evidence that inflammation plays a role in the etiology of sudden infant death syndrome (SIDS). Immune system dysregulation seems to be the background of higher infection susceptibility in SIDS infants. This phenotype is possibly determined by genetic factors.


Twenty-three single nucleotide polymorphisms (SNPs) in the following 13 candidate genes governing the immune system were successfully genotyped in 251 Caucasian SIDS cases and 336 controls from Germany: ADAR1, CSF2RB, DDX58, IFNA1, IFNA21, IFNA8, IFNAR2, IFNG, IL6, MX2, OAS1, OAS3, and TNFA. Associations between genotypes and SIDS were then statistically evaluated using logistic regression analyses.


Overall analysis revealed statistically significant results for two variants in interferon gamma (IFNG) (rs2069705: OR 1.40 (1.07; 1.83), p = 0.01; and rs2069727: OR 0.75 (0.59; 0.96), p = 0.02) and for one variant in interferon alpha 8 (IFNA8) (rs1330321: OR 1.85 (1.06; 3.21), p = 0.03). Haplotype analyses identified a three-marker risk IFNG haplotype rs2069727-rs2069718-rs2069705 associated with SIDS (OR = 1.62, 95% CI 1.23–2.13; p = 0.0003). Subgroup associations were found for variants in adenosine deaminase acting on RNA1 (ADAR1), 2′,5′-oligoadenylate synthetase-1 (OAS1) and colony stimulating factor 2 receptor beta common subunit (CSF2RB).


In summary, this large study of 251 SIDS cases for common variants in 13 candidate genes governing the immune system has provided first evidence for a role of IFNG in the etiology of SIDS and should stimulate further research into the clinicopathological relevance of immunomodulatory genes for this fatal syndrome.


SIDS Infection Genetic predisposition Interferon Polymorphism Association study 


Compliance with ethical standards

The local ethics committee at Hannover Medical School has approved this study.

Supplementary material

414_2018_1974_MOESM1_ESM.png (1.1 mb)
Supplementary Figure S1 Genotyping results for IFNG variants rs2069705, rs2069718 and rs2069727, each in a run consisting of 190 samples are given as an example. Gray samples could not be successfully typed, blue and red samples correspond to the homozygous genotypes, green samples to the heterozygous genotype. (PNG 1093 kb)
414_2018_1974_MOESM2_ESM.docx (169 kb)
Supplementary Figure S2 Association network for proteins modulated by the investigated genes of this study. (DOCX 169 kb)
414_2018_1974_Fig1_ESM.png (6 kb)
Supplementary Figure S3

Meta-analysis rs2069727 (Hannover study) with rs2430561 (Moscovis) (Mantel-Haenszel OR 0,79, 95% CI 0.64; 0.97, p = 0.02. OR, odds ratio; 95%CI, 95% confidence. (PNG 5 kb)

414_2018_1974_MOESM3_ESM.tif (719 kb)
High resolution image (TIF 718 kb)
414_2018_1974_MOESM4_ESM.docx (16 kb)
Supplementary Table 1 Allele frequencies in controls and SIDS cases for each analyzed variant. (DOCX 16 kb)
414_2018_1974_MOESM5_ESM.docx (13 kb)
Supplementary Table 2 Full names of genes and abbreviations are listed. (DOCX 13 kb)
414_2018_1974_MOESM6_ESM.docx (18 kb)
Supplementary Table 3 All SNPs are listed with their chromosome position, alleles, functional consequences and corresponding studies that have shown any effects of these SNPs. (DOCX 17 kb)
414_2018_1974_MOESM7_ESM.docx (16 kb)
ESM 1 (DOCX 16 kb)


  1. 1.
    Krous HF, Beckwith JB, Byard RW, Rognum TO, Bajanowski T, Corey T, Cutz E, Hanzlick R, Keens TG, Mitchell EA (2004) Sudden infant death syndrome and unclassified sudden infant deaths: a definitional and diagnostic approach. Pediatrics 114(1):234–238CrossRefGoogle Scholar
  2. 2.
    Center for Disease Control and Prevention Sudden unexpected infant death and sudden infant death syndrome. (accessed on 15.12.2017). statistic data from 2015
  3. 3.
    Baruteau AE, Tester DJ, Kapplinger JD, Ackerman MJ, Behr ER (2017) Sudden infant death syndrome and inherited cardiac conditions. Nat Rev Cardiol 14(12):715–726. doi: Epub 2017 Sep 7, Sudden infant death syndrome and inherited cardiac conditions
  4. 4.
    Ostfeld BM, Esposito L, Perl H, Hegyi T (2010) Concurrent risks in sudden infant death syndrome. Pediatrics 125(3):447–453. CrossRefGoogle Scholar
  5. 5.
    Highet AR, Goldwater PN (2013) Maternal and perinatal risk factors for SIDS: a novel analysis utilizing pregnancy outcome data. Eur J Pediatr 172(3):369–372. CrossRefGoogle Scholar
  6. 6.
    Moon RY, Hauck FR (2018) Risk factors and theories. In: Duncan JR, Byard RW, editors. SIDS Sudden Infant and Early Childhood Death: The Past, the Present and the Future. Adelaide (AU): University of Adelaide Press; May. Chapter 10Google Scholar
  7. 7.
    Goldwater PN (2017) Sudden infant death syndrome, infection, prone sleep position, and vagal neuroimmunology. Front Pediatr 5:223. eCollection 2017CrossRefGoogle Scholar
  8. 8.
    Goldwater PN (2017) Infection: the neglected paradigm in SIDS research. Arch Dis Child 102(8):767–772. CrossRefGoogle Scholar
  9. 9.
    Balduzzi PC, Greendyke RM (1966) Sudden unexpected death in infancy and viral infection. Pediatrics 38(2):201–206Google Scholar
  10. 10.
    Opdal SH, Opstad A, Vege A, Rognum TO (2003) IL-10 gene polymorphisms are associated with infectious cause of sudden infant death. Hum Immunol 64(12):1183–1189CrossRefGoogle Scholar
  11. 11.
    Summers AM, Summers CW, Drucker DB, Hajeer AH, Barson A, Hutchinson IV (2000) Association of IL-10 genotype with sudden infant death syndrome. Hum Immunol Dec 61(12):1270–1273CrossRefGoogle Scholar
  12. 12.
    Ferrante L, Opdal SH, Vege A, Rognum TO (2008) TNF-alpha promoter polymorphisms in sudden infant death. Hum Immunol 69(6):368–373. CrossRefGoogle Scholar
  13. 13.
    Moscovis SM, Gordon AE, Al Madani OM, Gleeson M, Scott RJ, Roberts-Thomson J, Hall ST, Weir DM, Busuttil A, Blackwell CC (2006) IL6 G-174C associated with sudden infant death syndrome in a Caucasian Australian cohort. Hum Immunol 67(10):819–825CrossRefGoogle Scholar
  14. 14.
    Fard D, Läer K, Rothämel T, Schürmann P, Arnold M, Cohen M, Vennemann M, Pfeiffer H, Bajanowski T, Pfeufer A, Dörk T, Klintschar M (2016) Candidate gene variants of the immune system and sudden infant death syndrome. Int J Legal Med 130(4):1025–1033. CrossRefGoogle Scholar
  15. 15.
    Läer K, Vennemann M, Rothämel T, Klintschar M (2013) Association between polymorphisms in the P2RY1 and SSTR2 genes and sudden infant death syndrome. Int J Legal Med 127(6):1087–1091. CrossRefGoogle Scholar
  16. 16.
    Läer K, Dörk T, Vennemann M, Rothämel T, Klintschar M (2015) Polymorphisms in genes of respiratory control and sudden infant death syndrome. Int J Legal Med 129(5):977–984. CrossRefGoogle Scholar
  17. 17.
    Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M, Bork P, von Mering C (2009) STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37(Database issue):D412–D416. CrossRefGoogle Scholar
  18. 18.
    Arnold M, Raffler J, Pfeufer A, Suhre K, Kastenmüller G (2015) SNiPA: an interactive, genetic variant-centered annotation browser. Bioinformatics 31(8):1334–1336CrossRefGoogle Scholar
  19. 19.
    Blackwell C, Moscovis S, Hall S, Burns C, Scott RJ (2015) Exploring the risk factors for sudden infant deaths and their role in inflammatory responses to infection. Front Immunol 6:44. eCollection 2015Google Scholar
  20. 20.
    Alfelali M, Khandaker G (2014) Infectious causes of sudden infant death syndrome. Paediatr Respir Rev 15(4):307–311. Google Scholar
  21. 21.
    Ferrante L, Opdal SH, Vege A, Rognum TO (2010) IL-1 gene cluster polymorphisms and sudden infant death syndrome. Hum Immunol 71(4):402–406. CrossRefGoogle Scholar
  22. 22.
    Moscovis SM, Gordon AE, Al Madani OM, Gleeson M, Scott RJ, Hall ST, Burns C, Blackwell C (2015) Virus infections and sudden death in infancy: the role of interferon-g. Front Immunol 6:107. eCollection 2015Google Scholar
  23. 23.
    Dashash M, Pravica V, Hutchinson IV, Barson AJ, Drucker DB (2006) Association of sudden infant death syndrome with VEGF and IL-6 gene polymorphisms. Hum Immunol 67(8):627–633CrossRefGoogle Scholar
  24. 24.
    Schroder K, Hertzog PJ, Ravasi T, Hume DA (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75(2):163–189CrossRefGoogle Scholar
  25. 25.
    Schoenborn JR, Wilson CB (2007) Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol 96:41–101CrossRefGoogle Scholar
  26. 26.
    Wang D, Zhong X, Huang D, Chen R, Bai G, Li Q, Yu B, Fan Y, Sun X (2014) Functional polymorphisms of interferon-gamma affect pneumonia-induced sepsis. PLoS One 9(1):e87049. eCollection 2014CrossRefGoogle Scholar
  27. 27.
    Paludan SR (1998) Interleukin-4 and interferon-gamma: the quintessence of a mutual antagonistic relationship. Scand J Immunol 48(5):459–468CrossRefGoogle Scholar
  28. 28.
    Ferrante L, Opdal SH (2015) Sudden infant death syndrome and the genetics of inflammation. Front Immunol 6:63. eCollection 2015CrossRefGoogle Scholar
  29. 29.
    Heininger U, Kleemann WJ, Cherry JD, Sudden Infant Death Syndrome Study Group (2004) A controlled study of the relationship between Bordetella pertussis infections and sudden unexpected deaths among German infants. Pediatrics 114(1):e9–e15CrossRefGoogle Scholar
  30. 30.
    Harrison LM, Morris JA, Telford DR, Brown SM, Jones K (1999) The nasopharyngeal bacterial flora in infancy: effects of age, gender, season, viral upper respiratory tract infection and sleeping position. FEMS Immunol Med Microbiol 25(1–2):19–28CrossRefGoogle Scholar
  31. 31.
    Prandota J (2004) Possible pathomechanisms of sudden infant death syndrome: key role of chronic hypoxia, infection/inflammation states, cytokine irregularities, and metabolic trauma in genetically predisposed infants. Am J Ther 11(6):517–546CrossRefGoogle Scholar
  32. 32.
    Howatson AG (1992) Viral infection and alpha interferon in SIDS. J Clin Pathol 45(11 Suppl):25–28Google Scholar
  33. 33.
    Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45(D1):D353–D361. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Legal Medicine (OE 5500)Hannover Medical SchoolHannoverGermany
  2. 2.Gynaecology Research UnitHannover Medical SchoolHannoverGermany

Personalised recommendations