International Journal of Legal Medicine

, Volume 133, Issue 3, pp 751–757 | Cite as

“The acid test”—validation of the ParaDNA® Body Fluid ID Test for routine forensic casework

  • Galina KulsteinEmail author
  • Peter Pably
  • Angelika Fürst
  • Peter Wiegand
  • Thorsten HadrysEmail author
Short Communication


The identification of the cellular origin and composition of crime scene–related traces can provide crucial insight into a crime scene reconstruction. In the last decade, especially mRNA-based body fluid and tissue identification (BFI) has been vigorously examined. Besides capillary electrophoretic (CE) and real-time quantitative PCR (RT-qPCR)-based approaches for mRNA detection, melt curve analysis bears potential as a simple-to-use method for BFI. The ParaDNA® Body Fluid ID Test relies on HyBeacon® probes and was developed as a rapid test for mRNA-based BFI of six different body fluids: vaginal fluid, seminal fluid, sperm cells, saliva, menstrual, and peripheral blood. The herein presented work was performed as an “acid test” of the system and should clarify whether the approach matches the requirements of forensic routine casework in German police departments. Tested samples consisted of single source as well as of mixed samples.


Forensic science Forensic body fluid identification (BFI) Messenger RNA (mRNA) ParaDNA Direct PCR Melt curve analysis Validation 



The authors would like to thank Lena Schultze, Karin Summers, and Sieglinde Springer from the Hamburg State Office of Criminal Investigation for their helpful participation with the experiments. We also acknowledge all body fluid donors for supplying samples.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

414_2018_1971_MOESM1_ESM.docx (35 kb)
ESM 1 (DOCX 35 kb)


  1. 1.
    Bauer M (2007) RNA in forensic science. Forensic Sci Int Genet 1:67–74. CrossRefGoogle Scholar
  2. 2.
    Schweighardt AJ, Tate CM, Scott KA, Harper KA, Robertson JM (2014) Evaluation of commercial kits for dual extraction of DNA and RNA from human body fluids. J Forensic Sci 60:157–165. CrossRefGoogle Scholar
  3. 3.
    Courts C, Madea B (2012) Ribonukleinsäure Bedeutung in der forensischen Molekularbiologie. Rechtsmedizin 22:135–143CrossRefGoogle Scholar
  4. 4.
    Bauer M, Patzelt D (2003) Protamine RNA as molecular marker for spermatozoa in semen stains. Int J Legal Med 117:175–179. Google Scholar
  5. 5.
    Haas C, Klesser B, Maake C, Bär W, Kratzer A (2009) mRNA profiling for body fluid identification by reverse transcription endpoint PCR and realtime PCR. Forensic Sci Int Genet 3:80–88. CrossRefGoogle Scholar
  6. 6.
    Juusola J, Ballantyne J (2005) Multiplex mRNA profiling for the identification of body fluids. Forensic Sci Int 152:1–12. CrossRefGoogle Scholar
  7. 7.
    Lindenbergh A, Maaskant P, Sijen T (2013) Implementation of RNA profiling in forensic casework. Forensic Sci Int Genet 7:159–166. CrossRefGoogle Scholar
  8. 8.
    van den Berge M, Ozcanhan G, Zijlstra SA, Lindenbergh A, Sijen T (2016) Prevalence of human cell material: DNA and RNA profiling of public and private objects and after activity scenarios. Forensic Sci Int Genet 21:81–89. CrossRefGoogle Scholar
  9. 9.
    Hanson EK, Ballantyne J (2014) Rapid and inexpensive body fluid identification by RNA profiling-based multiplex high resolution (HRM) analysis [version 2; referees: 2 approved]. F1000Res 2014(2):281. CrossRefGoogle Scholar
  10. 10.
    Hanson EK, Ingold S, Haas C, Ballantyne J (2015) Targeted multiplexed next generation RNA sequencing assay for tissue source determination of forensic samples. Forensic Sci Int Genet Supplement Series 5:e441–e443. CrossRefGoogle Scholar
  11. 11.
    Zubakov D, Kokmeijer I, Ralf A, Rajagopalan N, Calandro L, Wootton S, Langit R, Chang C, Lagace R, Kayser M (2015) Towards simultaneous individual and tissue identification: a proof-of-principle study on parallel sequencing of STRs, amelogenin, and mRNAs with the ion torrent PGM. Forensic Sci Int Genet 14:122–128. CrossRefGoogle Scholar
  12. 12.
    Ingold S, Dørum G, Hanson E, Berti A, Branicki W, Brito P, Elsmore P, Gettings KB, Giangasparo F, Gross TE, Hansen S, Hanssen EN, Kampmann ML, Kayser M, Laurent FX, Morling N, Mosquera-Miguel A, Parson W, Phillips C, Porto MJ, Pośpiech E, Roeder AD, Schneider PM, Schulze Johann K, Steffen CR, Syndercombe-Court D, Trautmann M, van den Berge M, van der Gaag KJ, Vannier J, Verdoliva V, Vidaki A, Xavier C, Ballantyne J, Haas C (2018) Body fluid identification using a targeted mRNA massively parallel sequencing approach – results of a EUROFORGEN/EDNAP collaborative exercise. Forensic Sci Int Genet 34:105–115. CrossRefGoogle Scholar
  13. 13.
    Dørum G, Ingold S, Hanson E, Ballantyne J, Snipen L, Haas C (2018) Predicting the origin of stains from next generation sequencing mRNA data. Forensic Sci Int Genet 34:37–48. CrossRefGoogle Scholar
  14. 14.
    Blackman S, Dawnay N, Ball G, Stafford-Allen B, Tribble N, Rendell P, Neary K, Hanson EK, Ballantyne J, Kallifatidis B, Mendel J, Mills D, Wells S (2015) Developmental validation of the ParaDNA® intelligence system – a novel approach to DNA profiling. Forensic Sci Int Genet 17:137–148. CrossRefGoogle Scholar
  15. 15.
    Stafford-Allen B, Dawnay N, Hanson EK, Ball G, Gupta A, Blackman S, French DJ, Duxbury N, Ballantyne J, Wells S (2018) Development of HyBeacon® probes for specific mRNA detection using body fluids as a model system. Mol Cell Probes 38:51–59. CrossRefGoogle Scholar
  16. 16.
    French J, Archard CL, Brown T, McDowell DG (2001) HyBeacon probes: a new tool for DNA sequence detection and allele discrimination. Mol Cell Probes 15(6):333–339. CrossRefGoogle Scholar
  17. 17.
    Blackman S, Stafford-Allen B, Hanson EK, Panasiuk M, Brooker A, Rendell P, Ballantyne J, Wells S (2017) Developmental validation of the ParaDNA® Body Fluid ID system. Forensic Sci Int Genet Supplement Series 6:e544–e545. CrossRefGoogle Scholar
  18. 18.
    Blackman S, Stafford-Allen B, Hanson EK, Panasiuk M, Brooker AL, Rendell P, Ballantyne J, Wells S (2018) Developmental validation of the ParaDNA® Body Fluid ID system – a rapid multiplex mRNA-profiling system for the forensic identification of body fluids. Forensic Sci Int Genet 37:151–161. CrossRefGoogle Scholar
  19. 19.
    Roeder AD, Haas C (2013) mRNA profiling using a minimum of five mRNA markers per body fluid and a novel scoring method for body fluid identification. Int J Legal Med 127:707–721. CrossRefGoogle Scholar
  20. 20.
    Haas C, Hanson EK, Anjos MJ, Bär W, Banemann R, Berti A, Borges E, Bouakaze C, Carracedo A, Carvalho M, Castella V, Choma A, de Cock G, Dötsch M, Hoff-Olsen P, Johansen P, Kohlmeier F, Lindenbergh PA, Ludes B, Maroñas O, Moore D, Morerod ML, Morling N, Niederstätter H, Noel F, Parson W, Patel G, Popielarz C, Salata E, Schneider PM, Sijen T, Sviežena B, Turanská M, Zatkalíková L, Ballantyne J (2012) RNA/DNA co-analysis from blood stains – results of a second collaborative EDNAP exercise. Forensic Sci Int Genet 6:70–80. CrossRefGoogle Scholar
  21. 21.
    Haas C, Hanson E, Anjos MJ, Banemann R, Berti A, Borges E, Carracedo A, Carvalho M, Courts C, de Cock G, Dötsch M, Flynn S, Gomes I, Hollard C, Hjort B, Hoff-Olsen P, Hríbiková K, Lindenbergh A, Ludes B, Maroñas O, McCallum N, Moore D, Morling N, Niederstätter H, Noel F, Parson W, Popielarz C, Rapone C, Roeder AD, Ruiz Y, Sauer E, Schneider PM, Sijen T, Court DS, Sviežená B, Turanská M, Vidaki A, Zatkalíková L, Ballantyne J (2013) RNA/DNA co-analysis from human saliva and semen stains – results of a third collaborative EDNAP exercise. Forensic Sci Int Genet 7:230–239. CrossRefGoogle Scholar
  22. 22.
    Haas C, Hanson EK, Anjos MJ, Bär W, Banemann R, Berti A, Borges E, Bouakaze C, Carracedo A, Carvalho M et al (2014) RNA/DNA co-analysis from human menstrual blood and vaginal secretion stains: results of a fourth and fifth collaborative EDNAP exercise. Forensic Sci Int Genet 8:203–212. CrossRefGoogle Scholar
  23. 23.
    Kulstein G, Schacker U, Wiegand P (2018) Old meets new: comparative examination of conventional and innovative RNA-based methods for body fluid identification of laundered seminal fluid stains after modular extraction of DNA and RNA. Forensic Sci Int Genet 36:130–140. CrossRefGoogle Scholar
  24. 24.
    Lacerenza D, Aneli S, Omedei M, Gino S, Pasino S, Berchialla P, Robino C (2016) A molecular exploration of human DNA/RNA co-extracted from the palmar surface of the hands and fingers. Forensic Sci Int Genet 22:44–53. CrossRefGoogle Scholar
  25. 25.
    Muciaccia B, Vico C, Aromatario M, Fazi F, Cecchi R (2015) Molecular analysis of different classes of RNA molecules from formalin-fixed paraffin-embedded autoptic tissues: a pilot study. Int J Legal Med 129:11–21. CrossRefGoogle Scholar
  26. 26.
    Fordyce SI, Kampmann ML, van Doorn NL, Gilbert MT (2013) Long-term RNA persistence in postmortem contexts. Investig Genet 4:7. CrossRefGoogle Scholar
  27. 27.
    Karlsson H, Guthenberg C, von Döbeln U, Kristenssson K (2003) Extraction of RNA from dried blood on filter papers after long-term storage. Clin Chem 49:979–981CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Federal Criminal Police OfficeWiesbadenGermany
  2. 2.Institute of Forensic Sciences, DNA DepartmentHamburg State Office of Criminal InvestigationHamburgGermany
  3. 3.Institute of Forensic Sciences, DNA DepartmentBavarian State Criminal Police OfficeMunichGermany
  4. 4.Institute of Legal MedicineUlm Medical CenterUlmGermany

Personalised recommendations